
INTRODUCTION
TO SHELL SCRIPTING

Dr. Jeffrey Frey
University of Delaware, IT

GOALS — BASIC
• What is shell scripting?
• What makes shell scripting useful?
• What should you know already…

GOALS — PART 1
• Script layout/design
• Variables

• environment vs. local
• types: string, numeric

• Standard language constructs
• conditionals
• loops

GOALS — PART 2
• Command substitution

• backticks vs. dollar–parenthesis

• Advanced variables
• advanced expansion
• arrays

• Advanced language constructs
• subroutines
• case statements (branch tables)
• and/or lists

–Plato

"…a true creator is necessity, which is the mother of
our invention."

THE TASK AT HAND
• You've performed 1000 runs of a program and

captured its output in files named out_#.log
• Each component of the program prints how long it

took to execute (walltime): [program] walltime=#
• The multiple walltimes in a file must be summed
• You wish to calculate the minimum, maximum, and

average walltime

THE TASK AT HAND
• You've performed 1000 runs of a program and

captured its output in files named out_#.log
1.For each file, find all [program] walltime=# lines and
extract the number of seconds. Add the number of
seconds = total

1.If that total is the largest yet, remember it
2.If that total is the smallest yet, remember it
3.Add to the 'total total' walltime

2.Show the minimum, maximum, and average walltime

THE TASK AT HAND
• For each file, find all [program] walltime=# lines

and extract the number of seconds, sum them

• grep extracts lines with 'walltime='
• sed removes program name and 'walltime='
• awk sums the walltimes

$ total_wall=$(grep walltime= file_1.log | sed 's/^.*walltime=//' | \
> awk 'BEGIN{total=0;}{total+=$1;}END{print total;}')

THE TASK AT HAND
• Numerical bits:

• Initialization:

• Per-file checks:
$ max_wall=0; min_wall=1000000; total_total_wall=0; num_files=0;

$ if [$total_wall -gt $max_wall]; then max_wall=$total_wall; fi
$ if [$total_wall -lt $min_wall]; then min_wall=$total_wall; fi
$ total_total_wall=$((total_total_wall+total_wall))
$ num_files=$((num_files+1))

THE TASK AT HAND
• Final analysis:

$ printf "Total walltime (min/max/avg): "
$ printf "%d/%d/%d\n" $min_wall $max_wall $((total_total_wall/num_files))

WHAT IS SHELL SCRIPTING?
• All of the example shell code was entered at the

prompt — in interactive mode
• If you want to reissue a command, you must edit

and retype it (or copy-and-paste, etc.)
• A number of the lines of shell code in our example

must be entered 1000 times!

WHAT IS SHELL SCRIPTING?

WHAT IS SHELL SCRIPTING?

When promoting the Apple II at computer shows, Steve Wozniak would sit down
before the show and manually enter the machine code for the BASIC interpreter

— because they hadn't made a disk or tape drive for the computer yet.

Imagine his time savings when a tape drive became available!

WHAT IS SHELL SCRIPTING?

• Hence the quote from Plato: monotonous,
repetitious tasks beg for invention of shortcuts.

When promoting the Apple II at computer shows, Steve Wozniak would sit down
before the show and manually enter the machine code for the BASIC interpreter

— because they hadn't made a disk or tape drive for the computer yet.

Imagine his time savings when a tape drive became available!

WHAT IS SHELL SCRIPTING?

WHAT IS SHELL SCRIPTING?

A shell script is a text file containing a
sequence of shell commands that you
would otherwise enter interactively.

WHAT MAKES SHELL
SCRIPTING USEFUL?

• Several obvious reasons:
• Massive time-savings versus working interactively
• Easily create your own 'commands'
• Provides a record of the commands necessary to

repeat a task.
• Far easier to debug a sequence of commands

— rerun script vs. reenter every command
• The script runs in its own environment

WHAT MAKES SHELL
SCRIPTING USEFUL?

• Several obvious reasons:
• Massive time-savings versus working interactively
• Easily create your own 'commands'
• Provides a record of the commands necessary to

repeat a task.
• Far easier to debug a sequence of commands

— rerun script vs. reenter every command
• The script runs in its own environment

Shell scripts are computer programs written in a high-
level language that extend the functionality of the shell

and simplify your workflow.

PREREQUISITES
• Your script skills are proportional to your

proficiency with the interactive shell environment.
• The more you know about the shell's language, the

more you can do in scripts…
• …and the more sophisticated you seek to make

your scripts, the more you tend to learn about the
shell's language.

PREREQUISITES
• Your script skills are proportional to your

proficiency with the interactive shell environment.
• Understand the Unix filesystem, privileges

• A script is a file: has a user and group owner and
user-group-other permissions

• “Execute” bit(s) must be set for script to be directly
executable

PREREQUISITES
• Your script skills are proportional to your

proficiency with the interactive shell environment.
• Understand the Unix filesystem, privileges
• Proficiency in a text editor

• From the shell: vi, vim, emacs, pico, nano, …
• On your PC

PREREQUISITES
• Your script skills are proportional to your

proficiency with the interactive shell environment.
• Understand the Unix filesystem, privileges
• Proficiency in a text editor

• From the shell: vi, vim, emacs, pico, nano, …
• On your PC

You must be aware of line encoding when editing shell scripts for
Unix/Linux on Windows! Windows text files demarcate end-of-line
differently than Unix/Linux, and many Unix/Linux programs will not
function properly when given a Windows text file.

The dos2unix command can convert the file to Unix/Linux line
encoding. A better option is to use a Windows text editor that can
save files with Unix/Linux line encoding.

PREREQUISITES
• Your script skills are proportional to your

proficiency with the interactive shell environment.
• Understand the Unix filesystem, privileges
• Proficiency in a text editor

PREREQUISITES
• Your script skills are proportional to your

proficiency with the interactive shell environment.
• Understand the Unix filesystem, privileges
• Proficiency in a text editor“Script” is a generic term that typically denotes an

interpreted (not compiled) programming language.
Scripts can be written for shells, Perl, Python, PHP,
AppleScript, JavaScript, Lua, TCL, et al. This tutorial
focuses on Bash shell scripting.

SCRIPT LAYOUT/DESIGN
• Each line of text in the script…

• …can have leading and trailing whitespace (which is
ignored when executed)

• …is a comment if it starts with the '#' character (and
is ignored when executed)

• …may be blank (and is ignored when executed)
• …contains all of or a portion of a shell command
• …can be continued on the next line if it ends with

the '\' character

SCRIPT LAYOUT/DESIGN
• Each line of text in the script…

• …can have leading and trailing whitespace (which is
ignored when executed)

• …is a comment if it starts with the '#' character (and
is ignored when executed)

• …may be blank (and is ignored when executed)
• …contains all of or a portion of a shell command
• …can be continued on the next line if it ends with

the '\' character

Bash shell scripting is a free–form programming language:
whitespace usually has no significance aside from
increasing the legibility of the code.

SCRIPT LAYOUT/DESIGN
• Example:

My first script

All lines above (and this one) are ignored on execution.
egrep -r \
 '^2015-01-14' \
 /var/log/messages* \
 /var/adm/syslog*

 # All done
 echo "All done."

 exit 1

SCRIPT LAYOUT/DESIGN
• What the shell sees when you execute this script:

egrep -r '^2015-01-14' /var/log/messages* /var/adm/syslog*
echo "All done."
exit 1

SCRIPT LAYOUT/DESIGN
• Note that this shell script is truly just a sequence

of commands.
• No variables, loops, conditionals, or other

programming constructs
• This script would be functional in most any Unix/

Linux shell — Bash, Csh, Tcsh, Zsh!

SCRIPT LAYOUT/DESIGN
• Note that this shell script is truly just a sequence

of commands.
$ bash my_first_script
egrep: /var/adm/syslog*: No such file or directory
"All done."

$ csh my_first_script
"All done."

$ tcsh my_first_script
"All done."

$ zsh my_first_script
my_first_script:7: no matches found: /var/adm/syslog*
"All done."

SCRIPT LAYOUT/DESIGN
• Executing the script

• In this example, a shell was started and asked to
execute the script:

• You need to know in which shell the script should
be executed!

$ bash my_first_script

SCRIPT LAYOUT/DESIGN
• Executing the script

• A script can be made to behave like any other
executable by adding a hash-bang (a.k.a. shebang)…

• …and marking it as executable with chmod.

#!/bin/bash

My first script

All lines above (and this one) are ignored on execution.
egrep -r \

$ chmod u+x my_first_script

SCRIPT LAYOUT/DESIGN
• Executing the script

$ ls -l my_first_script
-rwxr--r-- 1 user group 227 Jan 15 11:00 my_first_script

$./my_first_script
egrep: /var/adm/syslog*: No such file or directory
"All done."

SCRIPT LAYOUT/DESIGN
• Executing the script

$ ls -l my_first_script
-rwxr--r-- 1 user group 227 Jan 15 11:00 my_first_script

$./my_first_script
egrep: /var/adm/syslog*: No such file or directory
"All done."

To execute this script I prefixed
its name with './' — why did I do this?

SCRIPT LAYOUT/DESIGN
• Executing the script

• Another often-used hash-bang variant:

• /usr/bin/env looks for 'bash' on your shell's path and
uses the first one found as the interpreter for the
script.

#!/usr/bin/env bash

My first script

All lines above (and this one) are ignored on execution.
egrep -r \

• Most often seen in Python scripts.

SCRIPT LAYOUT/DESIGN
• Executing the script

• Another often-used hash-bang variant:

• /usr/bin/env looks for 'bash' on your shell's path and
uses the first one found as the interpreter for the
script.

#!/usr/bin/env bash

My first script

All lines above (and this one) are ignored on execution.
egrep -r \

If this shell script were shared with multiple users, there
would be no way to know which "bash" would be used
to execute the script! Each user's path may differ from
your own, so it's often best to not use /usr/bin/env in this
way.

• Most often seen in Python scripts.

SCRIPT LAYOUT/DESIGN
• Executing the script

• Script can also be executed in the current shell
without starting a new process with its own
environment.

• Usually used to setup path environment variables.
$ echo $INTEL_PATH

$ echo $MANPATH
/usr/share/man:/usr/local/share/man
$ source /opt/intel/setup_fortran.sh
$ echo $INTEL_PATH
/opt/intel/2013/sp1
$ echo $MANPATH
/opt/intel/2013/sp1/man:/usr/share/man:/usr/local/share/man

• Most often seen in Python scripts.

VARIABLES
• Where would mathematics be without variables

to represent unspecified values?
• The same goes for computer programming
• Variables help to generalize program code

• Rather than entering all data when the program is
written, variables defer value specification to the time of
execution

VARIABLES
• Command line arguments behave like variables
• Rather than editing and recompiling the 'ls'

command each time I use it, I provide one or
more paths:

$ ls /usr/bin /usr/sbin
/usr/bin:
total 366732
-rwxr-xr-x 1 root root 37000 Jun 25 2014 [
-rwxr-xr-x 1 root root 11528 Nov 11 2010 411toppm
-rwxr-xr-x 1 root root 112224 Nov 22 2013 a2p
-rwxr-xr-x. 1 root root 93848 Feb 15 2012 a2ping
-rwxr-xr-x 1 root root 50248 Jul 23 10:18 ab
 :

• As we will see, command line arguments actually ARE variables within a shell script

VARIABLES
• In the Bash shell, variables use a leading '$' when

referenced but are declared without it
• Names are case sensitive

$ x_var=1
$ X_Var=2

$ printf "%d == %d ?\n" $x_var $X_Var
1 == 2 ?

$ printf "X_VAR = %d ?\n" $X_VAR
X_VAR = 0 ?

VARIABLES
• In the Bash shell, variables use a leading '$' when

referenced but are declared without it
• Until they are explicitly exported, variables exist only

within the current shell:
$ declare | grep x_var
x_var=1

$ /bin/bash

$ printf "%d == %d ?\n" $x_var $X_Var
0 == 0 ?

$ declare | grep x_var
$

VARIABLES
• In the Bash shell, variables use a leading '$' when

referenced but are declared without it
• Until they are explicitly exported, variables exist only

within the current shell:
$ declare | grep x_var
x_var=1

$ /bin/bash

$ printf "%d == %d ?\n" $x_var $X_Var
0 == 0 ?

$ declare | grep x_var
$

Want to see lots of info about the variables defined in
your Bash shell? Type declare -p and hit return — be
prepared for a lengthy list (you may want to pipe it
through less)! Check out the man page for declare
and set if you're interested.

VARIABLES
• When your script executes, it inherits any

environment variables that were defined in the
parent process.
• The script is free to change their values and re-

export them.
• This influences child processes of the script, but

NOT the script's parent process.

• As a parent, I determine the rules by which I raise my children.

• When they become parents, they are free to reuse my rules or make their own.

• BUT, I cannot travel back in time and change the rules my parents used to raise me!

VARIABLES — NUMERIC
• By default, variables are strings

• Variables can declared as integer type to restrict
their usage as such:

$ declare -i x_var

$ x_var=f
$ echo $x_var
0

$ x_var=-15
$ echo $x_var
-15

$ x_var=-15.6
-bash: -15.6: syntax error: invalid arithmetic operator (error token is ".6")

• Declaring a variable as integer restricts the values that can be assigned to it.

VARIABLES — NUMERIC
• Arithmetic can be performed on integer variables.

• Any variables NOT declared as integer type are
converted during arithmetic evaluation.

$ declare -i x_var
$ x_var=-15

$ x_str=20
$ echo $((x_var + x_str))
5

$ x_str=0x15
$ echo $((x_var + x_str))
6

• Bash will convert strings containing hexadecimal and octal values.

VARIABLES — NUMERIC
• Arithmetic can be performed on integer variables.

• Any variables NOT declared as integer type are
converted during arithmetic evaluation.

$ declare -i x_var
$ x_var=-15

$ x_str=20
$ echo $((x_var + x_str))
5

$ x_str=0x15
$ echo $((x_var + x_str))
6

When does -15 + 15 = 6 ?
What might be printed if x_str = 017 ?

What about x_str = 2#1111 ?

• Bash will convert strings containing hexadecimal and octal values.

VARIABLES — OPERATORS
Arithmetic
+ addition
- subtraction
* multiplication
/ division
% modulo
** exponentiation

Bitwise
& and
| or
^ xor
~ negation

<< shift left
>> shift right

Other
expr ? expr : expr ternary operator

(expr) sub-expression (precedence)

(see http://wiki.bash-hackers.org/syntax/arith_expr)

http://wiki.bash-hackers.org/syntax/arith_expr

SPECIAL VARIABLES
$? exit status of last program executed
$$ pid of this program
$! pid of last-started background job
$# number of command line aguments
$* command line arguments as string†

$@ command line arguments as string†

$0 name of this program
$1 .. $9 command line argument 1, 2, …, 9

$_ starts as full path to script, changes
to last command's argument list

† The $* and $@ behave differently when inside double quotes.

SPECIAL VARIABLES
$? exit status of last program executed
$$ pid of this program
$! pid of last-started background job
$# number of command line aguments
$* command line arguments as string†

$@ command line arguments as string†

$0 name of this program
$1 .. $9 command line argument 1, 2, …, 9

$_ starts as full path to script, changes
to last command's argument list

† The $* and $@ behave differently when inside double quotes.

There are only nine positional variables ($1 .. $9) but
many programs accept more than nine arguments. The
shift command discards $1 and moves all positional
arguments down one index — including moving the
tenth argument into $9.

SPECIAL VARIABLES
#!/bin/bash

echo "The full path to this script is $_"
echo "This script is named $0 and is running with pid $$"
echo "You provided $# arguments"
echo "What does \$_ equal now: $_"
echo "The first two arguments are $1 and $2"
echo "The full argument list: $@"
echo "A printf with \$*:"
printf " %s\n" "$*"
echo "A printf with \$@:"
printf " %s\n" "$@"

SPECIAL VARIABLES
$ my_first_script "a b c" "d e f" g h i
The full path to this script is ./my_first_script
This script is named ./my_first_script and is running with pid 44108
You provided 5 arguments
What does $_ equal now: You provided 5 arguments
The first two arguments are a b c and d e f
The full argument list: a b c d e f g h i
A printf with $*:
 a b c d e f g h i
A printf with $@:
 a b c
 d e f
 g
 h
 i

SPECIAL VARIABLES
$ my_first_script "a b c" "d e f" g h i
The full path to this script is ./my_first_script
This script is named ./my_first_script and is running with pid 44108
You provided 5 arguments
What does $_ equal now: You provided 5 arguments
The first two arguments are a b c and d e f
The full argument list: a b c d e f g h i
A printf with $*:
 a b c d e f g h i
A printf with $@:
 a b c
 d e f
 g
 h
 i

What directory must be present on my
PATH for this to have worked?

CONDITIONALS
• If variables can take on arbitrary values, then it is

important to be able to test their value.
• A conditional evaluates an expression and executes a

different set of statements based upon its value.
• Implies branching: out-of-sequence execution of

program code

CONDITIONALS
• Integral to using conditionals is making use of

logical expressions.
• Test the value of an integer variable
• Test the value of a string variable

• Treat the string as a filepath and test file metadata
• Create complex expressions using logic operators

CONDITIONALS
• Logical expression review:

Integer Comparison
a -eq b equal
a -ne b not equal
a -gt b greater than
a -ge b greater than or equal to
a -lt b less than
a -le b less than or equal to

CONDITIONALS
• Logical expression review:

String Comparison
a = b equal
a != b not equal
-z a variable exists and is empty
-n a variable exists and is non-empty

a equivalent to '-n a'

CONDITIONALS
• Logical expression review:

Filepath Tests
-r a path is readable by user
-w a path is writable by user
-x a path is executable by user
-f a path exists and is a file
-d a path exists and is a directory
-e a path exists

† See the "man test" for additional filepath tests.

†

CONDITIONALS
• Logical expression review:

Logic Operators
expr -a expr both expressions evaluate to true
expr -o expr either expression evaluates to true

! expr logical negation
(expr) compound grouping

CONDITIONALS
• Newer versions of Bash have extended tests

• Double-bracket syntax
• Less dependent on proper quoting
• Accepts && and || operators
• Regular expression matching

$ if [[(-n $str1 && -n $str2) || $int1 -gt 4]]; then …

$ if [[$str1 =~ ^hpc]]; then …

CONDITIONALS
• Arithmetic expressions also valid

• Enclose in double parentheses

$ if ((i < 0)); then echo "Negative"; fi

$ if ((i**2 < 100)); then echo "Square of $i is less than 100."; fi

CONDITIONALS
• Simple conditional

• If a logical expression is true, perform the following
commands…

• …otherwise, continue executing after those
commands.

if expr; then
When expression is true, do everything up to the "fi"
 :

fi
Continue here…

CONDITIONALS
• Conditionals branch based upon an expression

that evaluates to zero = true, non-zero = false
• Most programming languages equate zero with false
• Shell's primary job is executing programs

• Unix programs return zero on success, non-zero on
error

• Behavior of conditionals follows this interpretation of
success/failure

CONDITIONALS
• Conditionals branch based upon an expression

that evaluates to zero or non-zero (true or false).
#!/bin/bash

x=0

if [$x -eq 0]; then
 echo "x equals 0"
fi

if [$x -eq 1]; then
 echo "x does not equal 0"
fi

#!/bin/bash

x=0

if ((x == 0)); then
 echo "x equals 0"
fi

if ((x == 1)); then
 echo "x does not equal 0"
fi

CONDITIONALS
• Conditionals branch based upon an expression

that evaluates to zero or non-zero (true or false).
#!/bin/bash

x=0

if [$x -eq 0]; then
 echo "x equals 0"
fi

if [$x -eq 1]; then
 echo "x does not equal 0"
fi

#!/bin/bash

x=0

if ((x == 0)); then
 echo "x equals 0"
fi

if ((x == 1)); then
 echo "x does not equal 0"
fi

$? = 0

$? = 1

$? = 0

$? = 1

CONDITIONALS
• Conditionals branch based upon an expression

that evaluates to zero or non-zero (true or false).

$ x=0

$ [$x -eq 0]
$ echo $?
0

$ [$x -eq 1]
$ echo $?
1

CONDITIONALS
• Example: required argument count

#!/bin/bash

if [$# -lt 3]; then
 echo "usage:"
 echo ""
 echo " $0 <input1> <input2> <output>"
 echo ""
 exit 1
fi

cat "$1" "$2" > "$3"

CONDITIONALS
• Example: required argument count

#!/bin/bash

if [$# -lt 3]; then
 echo "usage:"
 echo ""
 echo " $0 <input1> <input2> <output>"
 echo ""
 exit 1
fi

cat "$1" "$2" > "$3"

Why did I put the variables in quotes?

CONDITIONALS
• Example: required argument count, files exist

#!/bin/bash

if [$# -lt 3]; then
 echo "usage:"
 echo ""
 echo " $0 <input1> <input2> <output>"
 echo ""
 exit 1
fi

if [! -f "$1" -o ! -r "$1"]; then
 echo "ERROR: invalid file specified: $1"
 exit 1
fi

if [! -f "$2" -o ! -r "$2"]; then
 echo "ERROR: invalid file specified: $2"
 exit 1
fi

cat "$1" "$2" > "$3"

CONDITIONALS
• else : …execute this code if expression is false…

if expr; then
When expression is true, do everything up to the "else"
 :

else
When expression is false, do everything up to the "fi"
 :

fi
Continue here…

CONDITIONALS
• else : Executing code when conditional evaluates

false.

• Conditionals can be nested

 :
if [! -f "$1"]; then
 echo "ERROR: file does not exist: $1"
 exit 1
else
 # The file exists, but can I actually read it?
 if [! -r "$1"]; then
 echo "ERROR: file is not readable: $1"
 exit 1
fi

fi
 :

CONDITIONALS
• elif : Multi-level conditional — sequence of tests

versus nesting of tests
 :
if [! -f "$1"]; then
 echo "ERROR: file does not exist: $1"
 exit 1
elif [! -r "$1"]; then
echo "ERROR: file is not readable: $1"
exit 1

elif [! -s "$1"]; then
echo "WARNING: file is empty: $1"

fi
 :

LOOPS
• Scripting is useful because it minimizes one's

retyping of oft-used shell code
• In like fashion, loops allow a sequence of

statements to be executed zero or more times
• Iterate over a set of items
• Iterate a fixed number of times
• Iterate until a conditional is satisfied

• Iterate indefinitely

LOOPS — SET OF ITEMS
• Given a string containing words separated by

whitespace, perform a sequence of statements for
each word

for name in words; do
On each iteration, variable name contains next word

 :
done
Continue here…

LOOPS — SET OF ITEMS
• Given a string containing words separated by

whitespace, perform a sequence of statements for
each word

$ for w in a b c "d e f" g "h i j"; do echo $w; done
a
b
c
d e f
g
h i j

LOOPS — SET OF ITEMS
• Given a string containing words separated by

whitespace, perform a sequence of statements for
each word

#!/bin/bash

for w in "$@"; do
 echo $w
done

$./echo_args a b "c d e"
a
b
c d e

#!/bin/bash

for w in $@; do
 echo $w
done

$./echo_args a b "c d e"
a
b
c
d
e

• Iterate over the arguments to the script

• Illustrates the difference between quoted and unquoted use of $@

LOOPS — FIXED COUNT
• Perform a sequence of statements, exit loop when

conditional expression is false

while expr; do
The expr evaluated to false, do these statements…

 :
 # …then re-test expr
done
Continue here…

LOOPS — FIXED COUNT
• Perform a sequence of statements n times

#!/bin/bash

i=0
while (($i < 5)); do
 printf "%d\t%d\n" $i $((i*2+1))
 i=$((i+1))
done

$./multiply
0 1
1 3
2 5
3 7
4 9

LOOPS — FIXED COUNT
• Bash also has a C-style for loop construct:

Evaluate expr1 as an arithmetic expression
for ((expr1 ; expr2 ; expr3)); do
 # Evaluate expr2 as an arithmetic expression and exit if false
 # Otherwise do these statements…
 :
 # …then evaluate expr3 as an arithmetic expression and loop
done
Continue here…

LOOPS — FIXED COUNT
• Bash also has a C-style for loop construct:

#!/bin/bash

for ((i=0 ; i < 5 ; i++)); do
 printf "%d\t%d\n" $i $((i*2+1))
done

$./multiply
0 1
1 3
2 5
3 7
4 9

LOOPS — INDEFINITE
• Loops may also run indefinitely (usually until a

condition is met)
• Exit via one or more conditionals inside loop

#!/bin/bash

while ((0 == 0)); do
 echo "Trying to ping hostname.domain.net…"
 ping -c 1 -t 1 hostname.domain.net > /dev/null 2>&1
 if [$? -eq 0]; then
 break
 fi
 sleep 5
done
echo "I was able to ping hostname.domain.net."

LOOPS — INDEFINITE
• Loops may also run indefinitely (or until a

condition is met)
• Exit via loop's logical expression

#!/bin/bash

echo "Trying to ping hostname.domain.net…"
ping -c 1 -t 1 hostname.domain.net > /dev/null 2>&1
while [$? -ne 0]; do
 sleep 5
 echo "Trying to ping hostname.domain.net…"
 ping -c 1 -t 1 hostname.domain.net > /dev/null 2>&1
done
echo "I was able to ping hostname.domain.net."

LOOPS — INDEFINITE
• Related to while loop is until loop

• Exit loop when expression is true

#!/bin/bash

echo "Trying to ping hostname.domain.net…"
ping -c 1 -t 1 hostname.domain.net > /dev/null 2>&1
until [$? -eq 0]; do
 sleep 5
 echo "Trying to ping hostname.domain.net…"
 ping -c 1 -t 1 hostname.domain.net > /dev/null 2>&1
done
echo "I was able to ping hostname.domain.net."

PUTTING IT ALL TOGETHER
• Write a script that will accept any number of file

paths.
• For each path, determine if the path exists or not
• If it exists, determine whether it's a directory, regular

file, or other type of entity

PUTTING IT ALL TOGETHER
1. Loop over an arbitrary number of arguments

PUTTING IT ALL TOGETHER
So long as we have at one or more arguments, do the following loop:
while [$# -gt 0]; do
The path we're interested in is $1:

 # Discard $1 and move all other arguments down one index:
 shift
done

PUTTING IT ALL TOGETHER
1. Loop over an arbitrary number of arguments
2. For each argument, does path exist?

PUTTING IT ALL TOGETHER
So long as we have at one or more arguments, do the following loop:
while [$# -gt 0]; do
The path we're interested in is $1:
if [-e "$1"]; then

else
 echo "ERROR: path does not exist: $1"
fi

 # Discard $1 and move all other arguments down one index:
 shift
done

PUTTING IT ALL TOGETHER
1. Loop over an arbitrary number of arguments
2. For each argument, does path exist?
3. If path exists, what kind is it?

PUTTING IT ALL TOGETHER
#!/bin/bash

So long as we have at one or more arguments, do the following loop:
while [$# -gt 0]; do
The path we're interested in is $1:
if [-e "$1"]; then
 # What is it?
 if [-d "$1"]; then
 file_kind='directory'
 elif [-f "$1"]; then
 file_kind='regular file'
 else
 file_kind='other'
 fi
 printf "%-20s %s\n" "$file_kind" "$1"
else
 echo "ERROR: path does not exist: $1"
fi

 # Discard $1 and move all other arguments down one index:
 shift
done

PUTTING IT ALL TOGETHER
$ ls -l ./file_tests
-rw–r–—r–– 1 frey everyone 483 Jan 21 21:23 ./file_tests

$ chmod u+x ./file_tests

$ ls -l ./file_tests
-rwxr–—r–– 1 frey everyone 483 Jan 21 21:23 ./file_tests

$./file_tests /opt /opt/icu /opt/icu/attic /opt/icu/attic/icu4c-4_0-src.tgz \
> /opt/non-exist /dev
directory /opt
directory /opt/icu
directory /opt/icu/attic
regular file /opt/icu/attic/icu4c-4_0-src.tgz
ERROR: path does not exist: /opt/non-exist
directory /dev

PUTTING IT ALL TOGETHER
• Additional pieces

• If no arguments provided, show help text
• Options:

• --keep-running : path doesn't exist, show error but don't
exit

PUTTING IT ALL TOGETHER
#!/bin/bash

No arguments? User doesn't know what he's doing!
if [$# -eq 0]; then
 cat <<EOT
usage:

 $0 {options} [path1] {[path2] .. [pathn]}

 options:

 --keep-running do not exit on error

EOT
 exit 1
fi

Exit on error:
keep_running=0

PUTTING IT ALL TOGETHER
Check for options:
while [$# -gt 0]; do
if [[$1 =~ ^--]]; then
 if ["$1" == '--keep-running']; then
 keep_running=1
 elif ["$1" == '--']; then
 shift
 break
 else
 echo "ERROR: unknown option: $1"
 exit 1
 fi
else
 break
fi
shift

done

PUTTING IT ALL TOGETHER
So long as we have one or more arguments, do the following loop:
while [$# -gt 0]; do
The path we're interested in is $1:
if [-e "$1"]; then
 # What is it?
 if [-d "$1"]; then
 file_kind='directory'
 elif [-f "$1"]; then
 file_kind='regular file'
 else
 file_kind='other'
 fi
 printf "%-20s %s\n" "$file_kind" "$1"
else
 echo "ERROR: path does not exist: $1"
 if [$keep_running -eq 0]; then
 exit 1
 fi
fi

 # Discard $1 and move all other arguments down one index:
 shift
done

