
INTRODUCTION
TO SHELL SCRIPTING

Dr. Jeffrey Frey
University of Delaware, ITPART 2

version 2

GOALS — PART 2
• Shell plumbing review

• Standard files
• Redirection
• Pipes

GOALS — PART 2
• Command substitution

• backticks vs. dollar–parenthesis

• Advanced variables
• arrays

• Advanced language constructs
• subroutines
• case statements (branch tables)
• and/or lists

PLUMBING REVIEW
• In Unix/Linux, "files" play a central role

• Regular files (sequence of N bytes)
• Directories (collection of file entities)
• Sockets (e.g. network programming)
• FIFOs (a.k.a. named pipes)
• Hardware devices represented as files

• Hard disk = /dev/sda

PLUMBING REVIEW
• Programs perform i/o by opening, reading, writing

files
• Three standard files open for every program:

• stdin (0) — standard input (e.g. from keyboard)
• stdout (1) — standard output (e.g. to terminal)
• stderr (2) — alternate output (debugging, errors)

• Files can be associated with the standard channels when you
issue commands
• i/o redirection

PLUMBING REVIEW
• Take program input stdin from a file

• Send output to stdout to a file
• Truncate file

• Append to existing file (create if it doesn't)

[frey@mills ~]$./my_program < input.txt

[frey@mills ~]$./my_program > output.txt

[frey@mills ~]$./my_program >> output.txt

PLUMBING REVIEW
• Send alternate output (stderr) to a file

• Truncate file

• Append to existing file (create if it doesn't)

• Send to same file as stdout

[frey@mills ~]$./my_program 2> output.txt

[frey@mills ~]$./my_program 2>> output.txt

[frey@mills ~]$./my_program 2>&1

PLUMBING REVIEW
• Send alternate output (stderr) to a file

• Order is important

• Close file #1, open output.text as file #1
• Also open file #1 as file #2

• Also open file #1 as file #2
• Close file #1, open output.text as file #1

[frey@mills ~]$./my_program > output.text 2>&1

[frey@mills ~]$./my_program 2>&1 > output.text

PLUMBING REVIEW
• Send alternate output (stderr) to a file

• Order is important

• Close file #1, open output.text as file #1
• Also open file #1 as file #2

• Also open file #1 as file #2
• Close file #1, open output.text as file #1

[frey@mills ~]$./my_program > output.text 2>&1

[frey@mills ~]$./my_program 2>&1 > output.text

In first case, stderr and stdout both get written to
"output.text." In the second case, stderr continues
being written to e.g. terminal while stdout is written to
"output.text."

PLUMBING REVIEW
• Reuse output from one program as input for

another
• Write to a temporary file

• Read from the temporary file

• Remove temporary file

[frey@mills ~]$./my_program > /tmp/output.text

[frey@mills ~]$./my_other_program < /tmp/output.text > other_output.text

[frey@mills ~]$ rm /tmp/output.text

PLUMBING REVIEW
• Reuse output from one program as input for

another
• Pipes simplify this action

• Two distinct programs are executed
• stdin of second program is "connected" to stdout of

first program
• Second program sees just stdout from first, not

stderr as well.

[frey@mills ~]$./my_program | ./my_other_program > other_output.text

PLUMBING REVIEW
• Reuse output from one program as input for

another
• Pipes simplify this action

• Two distinct programs are executed
• stdin of second program is "connected" to stdout of

first program
• Second program sees just stdout from first, not

stderr as well.

[frey@mills ~]$./my_program | ./my_other_program > other_output.text

Unless I do what to the
first program's stderr?

PLUMBING REVIEW
• Duplicate output across two files

• Pipe output to another program but also write it to
a file

• Plumbing: a tee-junction

PLUMBING REVIEW
• Duplicate output across two files

• Pipe output to another program but also write it to
a file

• Plumbing: a tee-junction
[frey@mills ~]$./my_program | tee output.text | \
> ./my_other_program > other_output.text

PLUMBING REVIEW
• Special files to use in redirection

…as stdin …as stdout

/dev/null empty input discard all output

/dev/zero infinite sequence of
zero-valued bytes —

/dev/random sequence of pseudo-
random bytes —

/dev/urandom randomer pseudo-
random bytes —

COMMAND SUBSTITUTION
• Execute command:

[frey@mills ~]$ ls -1 /dev/disk/by-id | grep ^scsi | sed 's/ ->.*$//'
scsi-36c81f660f995ef001b57cce024739130
scsi-36c81f660f995ef001b57cce024739130-part1
scsi-36c81f660f995ef001b57d3cc0e25b769
scsi-36c81f660f995ef001b57d3cc0e25b769-part1
scsi-36c81f660f995ef001b57d3cc0e25b769-part2
scsi-36c81f660f995ef001b57d3cc0e25b769-part3

COMMAND SUBSTITUTION
• Assign stdout of command to variable:

[frey@mills ~]$ DISKS=`ls -1 /dev/disk/by-id | grep ^scsi | sed 's/ ->.*$//'`

[frey@mills ~]$ echo $DISKS
scsi-36c81f660f995ef001b57cce024739130 scsi-36c81f660f995ef001b57cce024739130-part1
scsi-36c81f660f995ef001b57d3cc0e25b769 scsi-36c81f660f995ef001b57d3cc0e25b769-part1
scsi-36c81f660f995ef001b57d3cc0e25b769-part2
scsi-36c81f660f995ef001b57d3cc0e25b769-part3

[frey@mills ~]$ DISKS=$(ls -1 /dev/disk/by-id | grep ^scsi | sed 's/ ->.*$//')

[frey@mills ~]$ echo $DISKS
scsi-36c81f660f995ef001b57cce024739130 scsi-36c81f660f995ef001b57cce024739130-part1
scsi-36c81f660f995ef001b57d3cc0e25b769 scsi-36c81f660f995ef001b57d3cc0e25b769-part1
scsi-36c81f660f995ef001b57d3cc0e25b769-part2
scsi-36c81f660f995ef001b57d3cc0e25b769-part3

OR

COMMAND SUBSTITUTION
• Backticks

• Must be careful to escape some characters
• \$ \` \\

• Hard to nest substitutions
• Dollar-parentheses

• Text inside parentheses used verbatim
• Easy to nest substitutions

[frey@mills ~]$ DISKS=$(ls -1 $(echo /dev/disk))

COMMAND SUBSTITUTION
• Dollar-parentheses

[frey@mills ~]$ DISKS=$(ls -1 $(echo /dev/disk/by-id) | grep ^scsi | sed 's/ -
>.*$//')

[frey@mills ~]$ echo $DISKS
scsi-36c81f660f995ef001b57cce024739130 scsi-36c81f660f995ef001b57cce024739130-part1
scsi-36c81f660f995ef001b57d3cc0e25b769 scsi-36c81f660f995ef001b57d3cc0e25b769-part1
scsi-36c81f660f995ef001b57d3cc0e25b769-part2
scsi-36c81f660f995ef001b57d3cc0e25b769-part3

COMMAND SUBSTITUTION
• Newlines will be replaced by a simple space…

• …unless the substitution is inside double quotes:
[frey@mills ~]$ DISKS="$(ls -1 /dev/disk/by-id | grep ^scsi | sed 's/ ->.*$//')"

[frey@mills ~]$ printf "%s\n" "$DISKS"
scsi-36c81f660f995ef001b57cce024739130
scsi-36c81f660f995ef001b57cce024739130-part1
scsi-36c81f660f995ef001b57d3cc0e25b769
scsi-36c81f660f995ef001b57d3cc0e25b769-part1
scsi-36c81f660f995ef001b57d3cc0e25b769-part2
scsi-36c81f660f995ef001b57d3cc0e25b769-part3

LOOP OVER WORDS
• Use the "for" loop over a set of words

• Words come from a command substitutions
[frey@mills ~]$ \
> for disk in $(ls -1 /dev/disk/by-id | grep ^scsi | sed 's/ ->.*$//'); do
> if [[$disk =~ ^scsi-([0-9a-f]+)$]]; then
> echo "SCSI disk found, id = ${BASH_REMATCH[1]}"
> fi
> done

SCSI disk found, id = 36c81f660f995ef001b57cce024739130
SCSI disk found, id = 36c81f660f995ef001b57d3cc0e25b769

LOOP OVER WORDS
• Use the "for" loop over a set of words

• Words come from a command substitutions
[frey@mills ~]$ \
> for disk in $(ls -1 /dev/disk/by-id | grep ^scsi | sed 's/ ->.*$//'); do
> if [[$disk =~ ^scsi-([0-9a-f]+)$]]; then
> echo "SCSI disk found, id = ${BASH_REMATCH[1]}"
> fi
> done

SCSI disk found, id = 36c81f660f995ef001b57cce024739130
SCSI disk found, id = 36c81f660f995ef001b57d3cc0e25b769

Any guess what this
variable syntax signifies?

ADVANCED EXPANSION
• Variable names can also be enclosed within curly

braces: ${PREFIX}
• Curly braces allow for additional logic and

transformation w.r.t. the variable's value

ADVANCED EXPANSION
• Indirect expansion

• The value of $VAR is itself
the name of a variable

• Substitute the value of that
variable

${!VAR}
> echo $PATH
/usr/bin:/bin:/opt/bin:…

> echo $VAR
PATH

> echo ${!VAR}
/usr/bin:/bin:/opt/bin:…

ADVANCED EXPANSION
• Names of variables whose

name start with "VAR"

• * versus @ has usual
significance w.r.t. parsing

${!VAR[*@]}
> VERBOSE=1
> VARIABLE=1
> echo ${!V*}
VAR VARIABLE VERBOSE
> echo ${!VAR*}
VAR VARIABLE

ADVANCED EXPANSION
• Provide actions if VAR is

empty:

• …or if VAR is not empty:

${VAR:[-=?+]word}
> unset VAR
> echo ${VAR:?not set}
-bash: VAR: not set
> echo ${VAR:+xyz}

> echo ${VAR:-xyz}
xyz
> echo $VAR

> echo ${VAR:=xyz}
xyz
> echo ${VAR:+is set}
is set
> echo $VAR
xyz

- use word

= assign word to $VAR and use word

? display an error and word

+ use word

• "Empty" means not set or null-valued

ADVANCED EXPANSION
• Provide actions if VAR is not

set:

• …or if VAR is set:

${VAR[-=?+]word}
> unset VAR
> echo ${VAR:-xyz}
xyz
> echo ${VAR-xyz}
xyz

> VAR=
> echo ${VAR:-xyz}
xyz
> echo ${VAR-xyz}

>

- use word

= assign word to $VAR and use word

? display an error and word

+ use word

• Leaving the colon out, a null-valued variable behaves as though it has a value

ADVANCED EXPANSION
• Number of characters in

the value of $VAR

• If VAR is "*" or "@", the
number of arguments to
the script/function

${#VAR}
> echo ${#VAR}
3
> demo() { echo ${#@}; }
> demo a b c
3
> demo "a b" c
2

ADVANCED EXPANSION
• Use a substring of the value

of $VAR

• Without length, all
characters from offset to
the end

• First character is offset zero

• Negative offset is relative to
end of string

${VAR:offset[:length]}

> echo ${VAR:0}
xyz
> echo ${VAR:1}
yz
> echo ${VAR:1:1}
y
> echo ${VAR:0:${#VAR}-1}
xy
> echo ${VAR: -2}
yz

• Space is necessary because ":-" is used to indicate default value

ADVANCED EXPANSION
• Use a substring of the value

of $VAR

• Without length, all
characters from offset to
the end

• First character is offset zero

• Negative offset is relative to
end of string

${VAR:offset[:length]}

> echo ${VAR:0}
xyz
> echo ${VAR:1}
yz
> echo ${VAR:1:1}
y
> echo ${VAR:0:${#VAR}-1}
xy
> echo ${VAR: -2}
yz

Why is there a space here?

• Space is necessary because ":-" is used to indicate default value

ADVANCED EXPANSION
• Remove a prefix from value

of VAR

• # = shortest match

• ## = longest match

${VAR#{#}word}

> echo ${VAR#x}
yz
> VAR=xxxyyzzz
> echo ${VAR#x}
xxyyzzz
> echo ${VAR#*x}
xxyyzzz
> echo ${VAR##*x}
yyzzz

> VAR=/var/log/messages
> echo ${VAR##*/}
messages

ADVANCED EXPANSION
• Remove a suffix from value

of VAR

• % = shortest match

• %% = longest match

${VAR%{%}word}

> VAR=/var/log/messages.txt
> echo ${VAR%.txt}.log
/var/log/messages.log

> echo ${VAR%%.*}
/var/log/messages

ADVANCED EXPANSION
• Find the first occurrence of

pattern in VAR and replace
with word

• The # and % anchor the
search to the start and
end of the value of VAR,
respectively

${VAR/{#|%}pattern/word}

> VAR=/var/log/messages.txt
> echo ${VAR/log?/}
/var/messages.txt

ADVANCED EXPANSION
• Find all occurrences of

pattern in VAR and replace
with word

${VAR//pattern/word}

> VAR=/var/log/messages.txt
> echo ${VAR//a/^}
/v^r/log/mess^ges.txt

ARRAY VARIABLES
• Just as a variable can be declared integer-valued…

• …declare MY_ARRAY as array-valued:

• Alternatively, just declare as a list of values:

[frey@mills ~]$ declare -a MY_ARRAY

[frey@mills ~]$ MY_ARRAY[0]="This"
[frey@mills ~]$ MY_ARRAY[1]="is"
[frey@mills ~]$ MY_ARRAY[2]="Florida"

[frey@mills ~]$ MY_ARRAY=("This" "is" "Florida")

ARRAY VARIABLES
• Access values in array by index:

• ${name[index]}
• index can be a static integer or a variable name

• Values at all indices:

[frey@mills ~]$ echo ${MY_ARRAY[0]}
This

[frey@mills ~]$ i=2; echo ${MY_ARRAY[i]}
Florida

[frey@mills ~]$ echo ${MY_ARRAY[*]}
This is Florida

ARRAY VARIABLES
• Access values in array by index:

• ${name[index]}
• index can be a static integer or a variable name

• Values at all indices:

[frey@mills ~]$ echo ${MY_ARRAY[0]}
This

[frey@mills ~]$ i=2; echo ${MY_ARRAY[i]}
Florida

[frey@mills ~]$ echo ${MY_ARRAY[*]}
This is Florida

What might happen if I use
@ rather than * here?

ARRAY VARIABLES
• Delete values in array by index:

• unset 'name[index]'

• Delete entire array:

[frey@mills ~]$ unset 'MY_ARRAY[0]'
[frey@mills ~]$ echo ${MY_ARRAY[*]}
is Florida

[frey@mills ~]$ declare | grep ^MY_ARRAY=
MY_ARRAY=([1]="is" [2]="Florida")
[frey@mills ~]$ echo ${#MY_ARRAY[@]}
2

[frey@mills ~]$ unset MY_ARRAY
[frey@mills ~]$ declare | grep MY_ARRAY
[frey@mills ~]$

ARRAY VARIABLES
• Count values in array:

• ${#name[@]}
[frey@mills ~]$ echo ${#MY_ARRAY[@]}
2

ARRAY VARIABLES
• Loop over array values:

[frey@mills ~]$ MY_ARRAY=(This is Florida)
[frey@mills ~]$ i=0; for w in "${MY_ARRAY[@]}"; do
> printf "arg #%d = %s\n" $i "$w"
> i=$((i+1))
> done
arg #0 = This
arg #1 = is
arg #2 = Florida

ARRAY VARIABLES
• Loop over array values:

[frey@mills ~]$ MY_ARRAY=(This is Florida)
[frey@mills ~]$ for ((i=0 ; i < ${#MY_ARRAY[@]} ; i++)); do
> printf "arg #%d = %s\n" $i "${MY_ARRAY[i]}"
> done
arg #0 = This
arg #1 = is
arg #2 = Florida

ARRAY VARIABLES
• Loop over array values:

[frey@mills ~]$ MY_ARRAY=(This is Florida)
[frey@mills ~]$ for ((i=0 ; i < ${#MY_ARRAY[@]} ; i++)); do
> printf "arg #%d = %s\n" $i "${MY_ARRAY[i]}"
> done
arg #0 = This
arg #1 = is
arg #2 = Florida

The indices must be sequential for this method to work.
A sparse array must be enumerated using a loop over
words, not indices.

SUBROUTINES
• Encapsulate often-used command sequences in a

sub-program
If the single argument is a full SCSI disk (not a partition of a disk)
print its id.
filter_and_print_scsi_disks () {
 if [[$1 =~ ^scsi-([0-9a-f]+)$]]; then
 echo "SCSI disk found, id = ${BASH_REMATCH[1]}"
 return 0
 fi
 return 1
}

Loop over disks by identifier:
for disk in $(ls -1 /dev/disk/by-id | sed 's/ ->.*$//'); do
 filter_and_print_scsi_disks "$disk"
 if [$? -ne 0]; then echo "Not a full SCSI disk: $disk"; fi
done

SUBROUTINES
• Encapsulate often-used command sequences in a

sub-program
• Function arguments treated same as command-line

arguments
• Return value from function is an integer, treated akin

to program return codes

SUBROUTINES
• Encapsulate often-used command sequences in a

sub-program
• Can be used in command substitutions, too

disks_by_id () {
 /bin/ls -1 /dev/disk/by-id | sed 's/ ->.*$//'
}

Loop over disks by identifier:
for disk in $(disks_by_id); do
 echo "$disk"
done

CASE STATEMENTS
• Many-valued branch table

• More concise, clear than a lengthy if…elif…else…fi
case "$1" in

 start|begin)
 # Commands to startup the daemon
 :
 ;;

 stop|end)
 # Commands to stop the daemon
 :
 ;;

 *)
 # For any other value:
 echo "Unknown option: $1"
 exit 1

esac

CASE STATEMENTS
• Branch labels can be simple patterns

case "$1" in

 [a-m]*)
 echo "$1 starts in the first half of the alphabet"
 ;;

 [n-z]*)
 echo "$1 starts in the second half of the alphabet"
 ;;

 *)
 # For any other value:
 echo "$1 is not a word"
 exit 1

esac

AND/OR LISTS
• Recall that return code 0 from program = success

• and list chains a sequence of commands using &&
• first to fail breaks out of the list

$(ls -1 /dev/sda &> /dev/null) && $(ls -1 /dev/sda5 &> /dev/null) && echo "OK"

AND/OR LISTS
• Recall that return code 0 from program = success

• and list chains a sequence of commands using &&
• first to fail breaks out of the list

$(ls -1 /dev/sda &> /dev/null) && $(ls -1 /dev/sda5 &> /dev/null) && echo "OK"

What might this output
redirection operator do?

AND/OR LISTS
• Recall that return code 0 from program = success

• and list chains a sequence of commands using &&
• first to fail breaks out of the list

• or list chains a sequence of commands using | |
• first to succeed breaks out of the list

[! -f "$file"] || (rm -f $file; echo "File \"$file\" deleted.")

SUBSHELLS

• Surround one or more commands (separated by
semicolons) with parentheses
• Start a new subshell
• Execute the commands
• Return code of final command = return code of

subshell

(echo "Deleting file \"$file\"."; rm $file 2> /dev/null)

EXERCISES

QUESTION 1
• Would you expect the

command at the left to
work? Why or why not?

> cat a_file
Hello, friend!

Greetings.

> tee 0> a_file

QUESTION 1
• Would you expect the

command at the left to work?
Why or why not?

• No. File descriptor zero
(0) is an input source (read
mode). The ">" opens the
target file in write mode to
accept output. Since it was
">" the file was truncated,
too, destroying the data in
it in the process!

> cat a_file
Hello, friend!

Greetings.

> tee 0> a_file
tee: read: Bad file descriptor
> cat a_file
>

QUESTION 2
• What does the command

at the left do? Feel free to
use man dd on a Unix/Linux
system to research the "dd"
command.

> dd if=/dev/zero of=a_file \
 bs=10 count=12

QUESTION 2
• What does the command

at the left do?

• It reads 10 bytes from /
dev/zero 12 times and
writes what was read to
a_file. This produces a
file containing 120 bytes,
all zero.

> dd if=/dev/zero of=a_file \
 bs=10 count=12
12+0 records in
12+0 records out
120 bytes transferred in 0.000067 …
> hexdump a_file
0000000 00 00 00 00 00 00 00 00 00 …
*
0000070 00 00 00 00 00 00 00 00
0000078
>

QUESTION 2
• What does the command

at the left do?

• It reads 10 bytes from /
dev/zero 12 times and
writes what was read to
a_file. This produces a
file containing 120 bytes,
all zero.

> dd if=/dev/zero of=a_file \
 bs=10 count=12
12+0 records in
12+0 records out
120 bytes transferred in 0.000067 …
> hexdump a_file
0000000 00 00 00 00 00 00 00 00 00 …
*
0000070 00 00 00 00 00 00 00 00
0000078
>

Shown in hexadecimal (base 16), so
0x78 = (7*16)+8 = 120

QUESTION 2
• What does the command

at the left do?

• What if I used /dev/random
instead?

> dd if=/dev/zero of=a_file \
 bs=10 count=12
12+0 records in
12+0 records out
120 bytes transferred in 0.000067 …
> hexdump a_file
0000000 00 00 00 00 00 00 00 00 00 …
*
0000070 00 00 00 00 00 00 00 00
0000078
> dd if=/dev/random of=a_file \
 bs=10 count=12

QUESTION 2
• What does the command

at the left do?

• What if I used /dev/random
instead?

• The file will contain 120
pseudo-random bytes.

> dd if=/dev/zero of=a_file \
 bs=10 count=12
12+0 records in
12+0 records out
120 bytes transferred in 0.000067 …
> hexdump a_file
0000000 00 00 00 00 00 00 00 00 00 …
*
0000070 00 00 00 00 00 00 00 00
0000078
> dd if=/dev/random of=a_file \
 bs=10 count=12
12+0 records in
12+0 records out
120 bytes transferred in 0.000108 …
> hexdump a_file
0000000 b7 ba cc 63 4d 71 28 c6 3f …
0000010 31 c3 a8 fd c1 a7 fb fb 18 …
0000020 78 c0 d8 b8 b8 ab b0 34 65 …
0000030 8c fd d2 7b d2 ff d8 f6 9b …
0000040 37 d0 86 82 b6 54 f1 05 89 …
0000050 d4 68 d6 1d 90 93 79 49 d0 …
 :

QUESTION 3
• When would this command

produce "xyz" as its output?
> echo ${VAR:+${VAR:=xyz}}

QUESTION 3
• When this command produce

"xyz" as its output?

• The ":+" syntax evaluates
the second expression if
VAR has a value. Since
VAR has a value, the
second expression simply
returns the value of VAR.

• Setting VAR=xyz is the only
way this produces that text.

> unset VAR
> echo ${VAR:+${VAR:=xyz}}

> VAR=abc
> echo ${VAR:+${VAR:=xyz}}
abc
> VAR=xyz
> echo ${VAR:+${VAR:=xyz}}
xyz
>

QUESTION 4
• Consider the script at the

left.

• What is "debug"?

• What kind of variable is
BASH_LINENO?

• What does this script
produce when executed?

#!/bin/bash

debug () {
 echo "DEBUG: $@ ($BASH_SOURCE:${BASH_LINENO[0]})"
}

debug Starting execution...
echo "Here we are!"
if [1 == 1]; then
 debug One is always equal to itself, right?
fi

QUESTION 4
• Consider the script at the

left.

• What is "debug"?

• A subroutine

#!/bin/bash

debug () {
 echo "DEBUG: $@ ($BASH_SOURCE:${BASH_LINENO[0]})"
}

debug Starting execution...
echo "Here we are!"
if [1 == 1]; then
 debug One is always equal to itself, right?
fi

QUESTION 4
• Consider the script at the

left.

• What kind of variable is
BASH_LINENO?

• An array

#!/bin/bash

debug () {
 echo "DEBUG: $@ ($BASH_SOURCE:${BASH_LINENO[0]})"
}

debug Starting execution...
echo "Here we are!"
if [1 == 1]; then
 debug One is always equal to itself, right?
fi

QUESTION 4
• Consider the script at the

left.

• What does this script
produce when executed?

> ./question_3
DEBUG: Starting execution... (./question_3:7)
Here we are!
DEBUG: One is always equal to itself, right? (./question_3:10)
>

#!/bin/bash

debug () {
 echo "DEBUG: $@ ($BASH_SOURCE:${BASH_LINENO[0]})"
}

debug Starting execution...
echo "Here we are!"
if [1 == 1]; then
 debug One is always equal to itself, right?
fi

QUESTION 4
• What is the final output of

the code at the left?
VALUE=000014

while [[$VALUE =~ ^0]]; do
 VALUE=${VALUE#0}
done
echo $VALUE

QUESTION 4
• What is the final output of

the code at the left?

• 14. The loop uses a
regular expression that is
true so long as VALUE
begins with a zero
character, and drops the
leading "0" each pass.

VALUE=000014

while [[$VALUE =~ ^0]]; do
 VALUE=${VALUE#0}
done
echo $VALUE

QUESTION 4
• What is the final output of

the code at the left?

• How might this be better
implemented using the
regular expression
capabilities of BASH?

VALUE=000014

while [[$VALUE =~ ^0]]; do
 VALUE=${VALUE#0}
done
echo $VALUE

QUESTION 4
• What is the final output of

the code at the left?

• How might this be better
implemented using the
regular expression
capabilities of BASH?

• A single regex operation;
exploit captured
parenthesized piece

VALUE=000014
if [[$VALUE =~ ^0+(.+)$]]; then
 VALUE=${BASH_REMATCH[1]}
fi
echo $VALUE

QUESTION 4
• What is the final output of

the code at the left?

• Could this be implemented
more simply another way?

VALUE=000014
if [[$VALUE =~ ^0+(.+)$]]; then
 VALUE=${BASH_REMATCH[1]}
fi
echo $VALUE

QUESTION 4
• What is the final output of

the code at the left?

• Could this be implemented
more simply another way?

• Extended globbing allows
for more complex
patterns; in this case,
zero-or-more repetitions
of the character "0"

shopt -s extglob

VALUE=000014
VALUE=${VALUE##*(0)}
echo $VALUE

