

https://gitlab.com/jtfrey/unix-software-dev.git

UNIX SOFTWARE DEVELOPMENT BASICS







’ Many scripting (non-compiled) languages also have the concept of code libraries

" Matlab .m files that add functions to the environment
" Python modules (e.g. see /usr/lib64/python2.6/site-packages on Farber)
" Perl modules (e.q. see /usr/lib64/perl5 on Farber)

" Note that creating an APl demands more planning and structure to a project



APPLICATION PROGRAM INTERFACE (API) IS A SET OF
ROUTINES, PROTOCOLS, AND TOOLS FOR BUILDING
SOFTWARE APPLICATIONS.

AN API SPECIFIES HOW SOFTWARE COMPONENTS
SHOULD INTERACT.

’ Many scripting (non-compiled) languages also have the concept of code libraries

" Matlab .m files that add functions to the environment
" Python modules (e.g. see /ust/lib64/python2.6/site-packages on Farber)
" Perl modules (e.q. see /usr/lib64/perl5 on Farber)

" Note that creating an APl demands more planning and structure to a project















* On our HPC systems we like to use "s-r-c" as the directory containing source code

" Abbreviation for "source" and we always read it as "source"


















| don't know HOW a particular OS implements the printf function, but the C standard 1/0 API tells me how to use that function. As long as | adhere to the API, my
programs' use of printf doesn't care what OS I'm using.
° Creating an API usually implies a library and header files (C/C++/Fortran) or a Fortran module (mention restrictions to specific compilers, etc.)



Compilers will do inlining and interprocedural optimizations — eliminating overhead of function calls by moving the statements into the context of the function call,
reordering statements, etc. Functions not present in the same source file cannot have these optimizations performed.
® An APl is meant to hide implementation details. As such, exposing any implementation details — internal organization of data structures, subroutines that may change
— will break dependent software when/if the library changes its implementation.





















" Arigorous naming scheme is defined and used for all types, functions, etc.

" The "ut_system" data structure isn't visible in the API
> A function dynamically creates "ut_system" instances as opaque pointers
" Another function dynamically destroys (frees) them
> If these details remain unchanged, a program that makes use of this API will not break when the library itself changes the internal implementation






The flag "-c" to the compiler emits the object code, NOT linked executable code
° Default naming removes language-specific suffix, adds ".o"
° The executable code is produced by linking the object code
° Default name of the linked executable is "a.out"
 Use the "-0" option to explicitly name the output of the compiler


















gcc -E

PREPROCESSOR

ASSEMBLER

gcc -c







Let's change printargv() to call the print() function instead
[ ] . .
The source => object code works fine
° The link stage fails because object code for the print() function wasn't found
¢ Likewise, if we leave out the printargv.o object file, the link phase fails because printargv() itself cannot be found






ANY SUFFICIENTLY ADVANCED
TECHNOLOGY IS INDISTINGUISHABLE

FROM MAGIC.




FOR A SCIENTIST, ANY TECHNOLOGY
THAT APPEARS MAGICAL SHOULD

PROMPT CURIOSITY AND CAREFUL
INVESTIGATION.




Investigation in this case means asking the compiler to be "verbose" — print lots of information normally not seen



The "--verbose" option to gcc reveals a number of object code files and libraries that are added into my object code files to produce the executable:
° et .0, crtbegin.o, crtend.o, crtn.o: standard prolog and epilog code to launch program
® -lc, -lgcc: C runtime



Dynamic libraries are preferred, but use of static libraries can be indicated with compiler flags
° Answer to question: notice all those -L flags? They indicate paths in which the compiler looks for libraries that are referenced by -I flags
¢ Mainly standard library paths, paths the OS knows to check: /lib, /usr/lib, /lib64
‘ Any non-standard library paths will only be checked if you tell the OS to do so



WITHOUT A FULL PATH, HOW DOES THE
COMPILER FIND THE LIBRARY
ASSQCIATED WITH THIS FLAG?

Dynamic libraries are preferred, but use of static libraries can be indicated with compiler flags
° Answer to question: notice all those -L flags? They indicate paths in which the compiler looks for libraries that are referenced by -I flags
¢ Mainly standard library paths, paths the OS knows to check: /lib, /usr/lib, /lib64
‘ Any non-standard library paths will only be checked if you tell the OS to do so






E.g. imagine the SSL library has a major security flaw
‘ Many other libraries and programs use SSL routines
°If statically linked, then all dependent software must be rebuilt, too
° Patch the dynamic library, all dependent software is also patched



"Standard paths" are defined in /etc/ld.so.conf.d
° On UD clusters we prefer to use LD_LIBRARY_PATH
® VALET alters the LD_LIBRARY_PATH for you






What if there's an error when compiling printargv.c? Will the build stop there?






Unless | add error checking into my script, it will rebuild everything despite encountering errors along the way



E.g. augmented with error checking after each compile command






YOU CAN JUST AS EASILY SUBSTITUTE
“LIBRARY" FOR "EXECUTABLE" HERE







Recipe commands MUST be indented with a TAB character



#
# Makefile for "my program"
#

my program: my program.c printargv.c
gcc -o my_program my program.c printargv.c

Recipe commands MUST be indented with a TAB character



#
# Makefile for "my program"

#

my_program: my program.c printargv.c
@E/N:El)gcc -o my_program my_program.c printargv.c

Recipe commands MUST be indented with a TAB character



The production of “my_program” depends on “my_program.c” and
“printargv.c” — if either source file has a modification timestamp > that of
z “my_program” (or “my_program"” doesn't exist), follow the recipe. ..

my_program: my program.c printargv.c
@E/N:El)gcc -o my_program my_program.c printargv.c

Recipe commands MUST be indented with a TAB character



The production of “my_program” depends on “my_program.c” and
4 |"printargv.c” — if either source file has a modification timestamp > that of
z “my_program” (or “my_program"” doesn't exist), follow the recipe. ..

my_program: my program.c printargv.c
@E/N:El)gcc -o my_program my_program.c printargv.c
A\

To produce “my_program" use the gcc compiler to preprocess, compile,

and assemble the two source files and then link that object code to create
the executable named “my_program"” in this directory.

Recipe commands MUST be indented with a TAB character



#
# Makefile for "my program"
#

my program: my program.o printargv.o
gcc -o my_ program my program.o printargv.o

my program.o: my program.c printargv.h

gcc -c¢ my_program.c

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c

Henceforth it should be understood that file modification timestamps are used by make to determine when a product must be remade
° The first rule found in the file is the default rule



The production of “my_program™ depends on the object code in

z “printargv.0” and “my_program.o” (first rule = default rule)

my program: my program.o printargv.o
gcc -o my_ program my program.o printargv.o

my program.o: my program.c printargv.h
gcc -c my_program.c

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c

Henceforth it should be understood that file modification timestamps are used by make to determine when a product must be remade
° The first rule found in the file is the default rule



The production of “my_program™ depends on the object code in
“printargv.0” and “my_program.o” (first rule = default rule)

#

* I The production of “my_program.o” depends on the source code in
my_ | "my_program.c” and the header file “printargv.h”

my program.o: my program.c printargv.h
gcc -c my_program.c

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c

Henceforth it should be understood that file modification timestamps are used by make to determine when a product must be remade
° The first rule found in the file is the default rule



The production of “my_program™ depends on the object code in
“printargv.0” and “my_program.o” (first rule = default rule)

#

* I The production of “my_program.o” depends on the source code in 1
my. Aroarain dllll U Neale E d
The production of “printargv.o” depends on the source code in “printargv.c™ ]

and the header file “printargv.h”

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c

Henceforth it should be understood that file modification timestamps are used by make to determine when a product must be remade
° The first rule found in the file is the default rule



#
# Makefile for "my program"
#

my program: my program.o printargv.o
gcc -o my_ program my program.o printargv.o

my program.o: my program.c printargv.h
gcc -c my_program.c

printargy To produce “my_program.o” use the gcc compiler to preprocess, compile,
and assemble the source file to produce object code

Henceforth it should be understood that file modification timestamps are used by make to determine when a product must be remade
° The first rule found in the file is the default rule



#
# Makefile for "my program"
#

my program: my program.o printargv.o
gcc -o my_ program my program.o printargv.o

my program.o: my program.c printargv.h
gcc -c my_program.c

printargy To produce “my_program.o” use the gcc compiler to preprocess, compile,
and assemble the source file to produce object code

assemble the source file to produce object code

Henceforth it should be understood that file modification timestamps are used by make to determine when a product must be remade
° The first rule found in the file is the default rule



#
# Makefile for "my program"
#

my program: my program.o printargv.o
gcc -o my_ program my program.o printargv.o

my_proc To produce “my_program” use the gcc compiler to link the object code and

produce the executable named “my_program" in this directory

= and assemble the sourc

assemble the souce fle to produce object code

Henceforth it should be understood that file modification timestamps are used by make to determine when a product must be remade
° The first rule found in the file is the default rule



#

# Makefile for "my program"

#

TARGET my program

OBJECTS = printargv.o my_ program.o

$ (TARGET) : $ (OBJECTS)
gcc -o $(TARGET) $(OBJECTS)

my_program.o: my program.c printargv.h
gcc -c my_program.c

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c




#

z Makefile for “m}[fociate the string “my_program” with the variable named TARGET

TARGET my program
OBJECTS = printargv.o my_ program.o

$ (TARGET) : $ (OBJECTS)
gcc -o $(TARGET) $(OBJECTS)

my_program.o: my program.c printargv.h
gcc -c my_program.c

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c




#

# Makefile for "my Agsgciate the string “my_program” with the variable named TARGET

#

Assaciate a list of two strings with the variable named OBJECTS

TARGET = my.

OBJECTS = printargv.o my_ program.o

$ (TARGET) : $ (OBJECTS)
gcc -o $(TARGET) $(OBJECTS)

my_program.o: my program.c printargv.h
gcc -c my_program.c

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c




#

# Makefile for "my Agsgciate the string “my_program” with the variable named TARGET

#
Assaciate a list of two strings with the variable named OBJECTS
TARGET = my.

OBJECTS = printargv.o my_ program.o

$ (TARGET) : $ (OBJECTS)

acc _—o S(TARGET) <& (ORIRCTS)
- Evaluate the value of the variable TARGET, use that as the product side of this rule.

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c




#
# Makefile for "my Agsgciate the string “my_program” with the variable named TARGET

Assaciate a list of two strings with the variable named OBJECTS

#

TARGET = my.

OBJECTS printargv.o my_program.o

$ (TARGET) : $ (OBJECTS)

gcc -o ARGET) & (ORIECTS)
Evaluate the value of the variable OBJECTS, use that as the ingredient side of this rule. ]
my_ program.o:

gcc - e

printargv.o: printargv.c printargv.h
gcc -c¢ printargv.c




#
# Makefile for "my Agsgciate the string “my_program” with the variable named TARGET

#
Assaciate a list of two strings with the variable named OBJECTS
TARGET = my.

OBJECTS = printargv.o my_ program.o

$ (TARGET) : $ (OBJECTS)
gcc -o $(TARGET) $(OBJECTS)

The recipe here uses the value of our two variables: if | modify the value assigned to
TARGET or OBJECTS at the top of the makefile, | affect both the rules and the recipes
associated with those rules. This makes it easy to add more source files to the project
(additional object code names in OBJECTS) or rename the executable produced.




#

# Makefile for "my program"

#

TARGET my program

OBJECTS = printargv.o my_ program.o

$ (TARGET) : $ (OBJECTS)
gcc -o $@ $+

my_program.o: my program.c printargv.h
gcec -c $<

printargv.o: printargv.c printargv.h
gcc -c $<

Automatic variables refer to the product and ingredient lists associated with a recipe



#
# Makefile for "my program"
#

$@ refers to the rule's product
$+ refers to the entire ingredient list (verbatim)
OBJECTS $/ refers to the ingredient list, with no repetitions of items

TARGET

$ (TARGET) : $(O TS)
gcc -o $@ $+

my_program.o: my program.c printargv.h
gcec -c $<

printargv.o: printargv.c printargv.h
gcc -c $<

Automatic variables refer to the product and ingredient lists associated with a recipe



#
# Makefile for "my program"
#

$@ refers to the rule's product
$+ refers to the entire ingredient list (verbatim)
OBJECTS $/ refers to the ingredient list, with no repetitions of items

TARGET

$ (TARGET) : $(O TS)
gcc -o $@ $+

my_program.o: my program.c printargv.h
gcec -c $<

printargv.o: printargv.c printargv.h
gcc -c $<

$< refers to ONLY the first item in the ingredient list

Automatic variables refer to the product and ingredient lists associated with a recipe



#

# Makefile for "my program"

#

TARGET my program

OBJECTS = printargv.o my_ program.o

$ (TARGET) : $ (OBJECTS)
gcc -o $@ $+ $(LDFLAGS) $(LIBS)

my program.o: my program.c printargv.h

printargv.o: printargv.c printargv.h

[ . ©
%.0: %.C

gcc -c $(CPPFLAGS) $(CFLAGS) $<

Rules with no recipe simply outline the dependencies
° Wildcard rules with a recipe actually create the product



#
# Makefile for "my program"
#
TARGET my program

OBJECTS = printargv.o my_ program.o

% (TAI The production of “printargv.0” depends on the source code in “printargv.c
and the header file “printargv.h”

my_Dp

printargv.o: printargv.c printargv.h

[ . ©
%.0: %.C

gcc -c $(CPPFLAGS) $(CFLAGS) $<

Rules with no recipe simply outline the dependencies
° Wildcard rules with a recipe actually create the product



#
# Makefile for "my program"
#
TARGET my program

OBJECTS = printargv.o my_ program.o

% (TAI The production of “printargv.0” depends on the source code in “printargv.c
and the header file “printargv.h”

my_Dp

printargv.o: printargv.c printargv.h

) gcc -c $(CPPFLAGS) $(CFLAGS) $<

To produce a “.o" file from a “.c" file, follow this recipe.

Rules with no recipe simply outline the dependencies
° Wildcard rules with a recipe actually create the product



z Makefile for "my program"

#

TARGET my program

OBJECTS = printargv.o my_ program.o
default: $(TARGET)

clean:
$(RM) $(TARGET) $ (OBJECTS)

#

$ (TARGET) : $ (OBJECTS)
gcc -o $@ $+ $(LDFLAGS) $(LIBS)

my_ program.o: my program.c printargv.h

printargv.o: printargv.c printargv.h

o o
%.0: %.C

gcc -c $(CPPFLAGS) $(CFLAGS) $<

A "clean" rule is typically present to remove all intermediates and products
° A "default" rule can be useful to ensure the appropriate rule is indicated despite future editing of the rest of the makefile



#
# Makefile for "my program"
#

rar Explicitly define what the default rule should be by placil}? this rule at the
on top of the file. Changes to the rest of the file will not inte

ere.

default: $(TARGET)

clean:
$(RM) $(TARGET) $ (OBJECTS)

#

$ (TARGET) : $ (OBJECTS)
gcc -o $@ $+ $(LDFLAGS) $(LIBS)

my_ program.o: my program.c printargv.h
printargv.o: printargv.c printargv.h

o o
%.0: %.C

gcc -c $(CPPFLAGS) $(CFLAGS) $<

A "clean" rule is typically present to remove all intermediates and products
° A "default" rule can be useful to ensure the appropriate rule is indicated despite future editing of the rest of the makefile



#
# Makefile for "my program"
#

ar Explicitly define what the default rule should be by placing this rule at the ]

A rule is usually added that removes all intermediates (object code files) and
the target itself. (Avoid naming your executable “clean” ...

clean:
$(RM) $(TARGET) $ (OBJECTS)

#

$ (TARGET) : $ (OBJECTS)
gcc -o $@ $+ $(LDFLAGS) $(LIBS)

my_ program.o: my program.c printargv.h
printargv.o: printargv.c printargv.h

o o
%.0: %.C

gcc -c $(CPPFLAGS) $(CFLAGS) $<

A "clean" rule is typically present to remove all intermediates and products
° A "default" rule can be useful to ensure the appropriate rule is indicated despite future editing of the rest of the makefile



The default rule requires the two object code files; they aren't present, so they must be made

¢ printargv.o depends on printargv.c and printargv.h — but since the product doesn't exist, this doesn't matter this time
° The wildcard rule is a match: produce printargv.o using printargv.c

° Same for my_program.o

° Dependencies for default rule are ready, now do its recipe: produce the target (executable) my_program



#
# Makefile for "my program"
#

TARGET = my_program
OBJECTS = printargv.o my_program.o
default: $(TARGET)

clean:
$(RM) $(TARGET) $(OBJECTS)

#

$ (TARGET) : $ (OBJECTS)
gcc -o $@ $+ $(LDFLAGS) $(LIBS)

my_program.o: my_program.c printargv.h
printargv.o: printargv.c printargv.h

%.0: %.cC
gce -c¢ $(CPPFLAGS) $(CFLAGS) $<

The default rule requires the two object code files; they aren't present, so they must be made

‘ printargv.o depends on printargv.c and printargv.h — but since the product doesn't exist, this doesn't matter this time
° The wildcard rule is a match: produce printargv.o using printargv.c

° Same for my_program.o

° Dependencies for default rule are ready, now do its recipe: produce the target (executable) my_program






make checks the return code from each command in a recipe; non-zero implies error, causes it to stop what it's doing



make checks the return code from each command in a recipe; non-zero implies error, causes it to stop what it's doing



notice that after | fixed the syntax error, make did NOT recompile printargv

° it had already done that — successfully — in the previous make and none of its dependencies were newer than the .o file
[ J



If I do make again, nothing has changed so nothing needs to be done






#
# Top-level Makefile for project
#

SUBPROJS = libprintargv my_program

default:
@for SUBPROJ in $ (SUBPROJS); do make -C $$SUBPROJ; done

clean:
@for SUBPROJ in $(SUBPROJS); do make -C $$SUBPROJ clean; done




# Makefile for 'libprintargv' subproject

include ../Makefile.inc

TARGET = libprintargv.a
OBJECTS = printargv.o
default: $(TARGET)

clean:
$(RM) $(TARGET) $(OBJECTS)

#

$ (TARGET) : $ (OBJECTS)
$(AR) cr $(TARGET) $(OBJECTS)

printargv.o: printargv.c printargv.h

include $(SRCDIR)/Makefile.rules

A makefile can import the contents of other files using the "include" statement
‘ E.g. single file containing all variable definitions, import at the start of each subproject's makefile
° Compare against having to edit each subproject makefile to make changes
¢ E.g. file containing wildcard rules that are common to all subproject makefiles



# Makefile for 'libprintargv' subproject

include ../Makefile.inc

TARGET = libprintargv.a
OBJECTS = printargv.o
default: $(TARGET)

clean:

$(RM) $(TARGET) $(OBJECTS) #
# Makefile.inc
# # Global variables for subprojects
#

$ (TARGET) : % (OBJECTS)
$(AR) cr $(TARGET) $(OBJECTS) MAKEFILE_INC :=$ (abspath $(lastword $(MAKEFILE LIST)))

. . . SRCDIR :=$(dir $(MAKEFILE_ INC))
printargv.o: printargv.c printargv.h

cc = gcc
include $(SRCDIR)/Makefile.rules CPPFLAGS += -DVERSION=1.0
CFLAGS += -g -03

LDFLAGS +=
LIBS += -1m

A makefile can import the contents of other files using the "include" statement
‘ E.g. single file containing all variable definitions, import at the start of each subproject's makefile
° Compare against having to edit each subproject makefile to make changes
¢ E.g. file containing wildcard rules that are common to all subproject makefiles



#
# Makefile for 'libprintargv' subproject
#

include ../Makefile.inc

TARGET = libprintargv.a
OBJECTS = printargv.o
default: $(TARGET)

clean:

$(RM) $(TARGET) $(OBJECTS) #

# Makefile.inc

# # Global variables for subprojects
$ (TARGET) : $(OBJECTS) #

$(AR) cr $(TARGET) $(OBJECTS) MAKEFIL
SRCDIR #

# Makefile.rules

ce 4
include $(SRCDIR)/Makefile.rules TG : Templated rules used by subprojects

CFLAGS

printargv.o: printargv.c printargv.h

.0: %.cC
LDFLAGS gcc -c $(CPPFLAGS) $(CFLAGS) $<
LIBS

A makefile can import the contents of other files using the "include" statement
‘ E.g. single file containing all variable definitions, import at the start of each subproject's makefile
° Compare against having to edit each subproject makefile to make changes
¢ E.g. file containing wildcard rules that are common to all subproject makefiles



# Makefile for 'my program' subproject

include ../Makefile.inc

TARGET = my_program

OBJECTS = my_program.o

# Augment values from ../Makefile.inc:
CPPFLAGS += -I$(SRCDIR)/libprintargv
LDFLAGS += -L$(SRCDIR)/libprintargv
LIBS += -lprintargv

TARGET = libprintargv.a

OBJECTS = printargv.o

default: $(TARGET)

clean:
$(RM) $(TARGET) $(OBJECTS)

#

$ (TARGET) : $(OBJECTS)
$(CC) $(CFLAGS) -o $@ $+ $(LDFLAGS) $(LIBS)

my_program.o: my_program.c $(SRCDIR)/libprintargv

include $(SRCDIR)/Makefile.rules

Similar to the makefile for the "libprintargv" subproject:
° Add the path to libprintargv to CPPFLAGS for finding header files
° Add the path to libprintargv to LDFLAGS for finding the library itself
° Add the library reference to LIBS
° Produces my_program from the my_program.c source file and the static library generated by the libprintargv subproject
° Note the dependency on the libprintargv directory — any change to file(s) inside it implies my_program.c must be recompiled



Similar to the makefile for the "libprintargv" subproject:
° Add the path to libprintargv to CPPFLAGS for finding header files
° Add the path to libprintargv to LDFLAGS for finding the library itself
° Add the library reference to LIBS
° Produces my_program from the my_program.c source file and the static library generated by the libprintargv subproject



The touch command updates the timestamp on the file(s) listed
° Since printargv.h is newer than printargv.o, printargv.c is recompiled
¢ printargv.o is newer than libprintargv.a, library is rebuilt

¢ Timestamp on libprintargv directory is now newer than my_program.o, so my_program.c is recompiled
° my_program.o is newer than my_program, executable is rebuilt









