

https://gitlab.com/jtfrey/unix-software-dev.git

UNIX SOFTWARE DEVELOPMENT BASICS

The configure.ac file describes the project itself, what libraries or features it requires to build
° The Makefile.am describes the product(s) and the ingredients

° The aclocal command makes a copy of the autoconf tools inside the project

° The autoconf command processes the configure.ac to produce the configure script

The configure.ac file describes the project itself, what libraries or features it requires to build
° The Makefile.am describes the product(s) and the ingredients

° The aclocal command makes a copy of the autoconf tools inside the project

° The autoconf command processes the configure.ac to produce the configure script

autoscan checks source code for portability issues, ensures configure.ac checks for them
¢ autoupdate checks configure.ac for proper syntax

The automake command creates the template Makefile(s)
° Also copies into the project any auto tools necessary during the build (e.g. install-sh and depcomp)

Test the result by creating a "build" directory
° Autotools takes care of determining all the paths, so you don't need to build inside the source code itself
° Our Makefile crafted by hand did the compiling and linking right in with the source code
° To make an alternate build using e.g. increased optimization | would have to duplicate the entire source tree

Notice the creation of files in ".deps"

Notice the creation of files in ".deps"
° For each source file processed, a very complete list of dependencies
° No recipe, just the dependencies
° All header files and source files that were used, so a system patch that changes /usr/include/stdio.h would also see this being rebuilt on a subsequent "make"

An "install" target is present in the Makefile

A "clean" target is present, as is "distclean" to remove generated Makefile(s), etc.
° Alter the setup:
 Intel C compiler, use optimization level 3 on all C code and include the MKL libraries

Assume I'm working with a fresh copy of the src-3 directory...
° autotools tends to produce a LOT of extra files and directories inside your project

Assume I'm working with a fresh copy of the src-3 directory...
° autotools tends to produce a LOT of extra files and directories inside your project

Excellent page containing often-used bits of CMake syntax

Unlike autotools (which embeds scripted tools right in the source
project) use of CMake requires every system to have CMake
utilities present.

Excellent page containing often-used bits of CMake syntax

No additional files/tools are mandated in your source tree
‘ Syntax of CMake language is pretty straightforward, where m4 syntax may be harder for you

No additional files/tools are mandated in your source tree
¢ Syntax of CMake language is pretty straightforward, where m4 syntax may be harder for you

Again, builds done in a standalone directory, NOT in the source itself
° Build configuration can be guided solely by discovery and CLI options
¢ Assign typed values to variables using "-D" arguments

Build configuration can also be interactive with menu-driven interface
[J . .
"advanced mode" shows all variables and their values

CMAKE_TINSTALL PREFIX /home/1001

CMAKE__

Press
CMake
Press
Press
Press

Page 1 of 1

INSTALL_PREFIX: No help, variable specified on the command line.
[enter] to edit option
Version 2.8.12.2

[c] to configure

[h] for help Press [qg] to quit without generating
[t] to toggle advanced mode (Currently Off)

Build configuration can also be interactive with menu-driven interface
"advanced mode" shows all variables and their values

Page 1 of 1
CMAKE_INSTALL_PREFIX /home/1001

(3) Generate build files

(2) Configure

(1) Edit Variables

CMAKE_INSTALL_PREFIX: No help, variable specified on the command line.
Press [enter] to edit option
CMake Version 2.8.12.2

Press [c] to configure

Press [h] for help Press [qg] to quit without generating
Press [t] to toggle advanced mode (Currently Off)

Build configuration can also be interactive with menu-driven interface
"advanced mode" shows all variables and their values

Configure, then toggle to advanced mode
° Use arrow keys to move between variables
° Hit return/enter to start editing
° Hit return/enter to keep changes, esc to discard

Page 1 of
CMAKE_AR */usr/bin/ar
CMAKE_BUILD_TYPE *RelWithDebInfo
CMAKE_COLOR_MAKEFILE *ON
CMAKE_CXX COMPILER */usr/1lib64/ccache/c++
CMAKE_CXX FLAGS &
CMAKE_CXX_FLAGS_DEBUG *-g
CMAKE_CXX_ FLAGS_MINSIZEREL *-Os -DNDEBUG
CMAKE_CXX FLAGS_RELEASE *-03 -DNDEBUG
CMAKE_CXX_FLAGS_RELWITHDEBINFO *-02 -g -DNDEBUG
CMAKE_C_COMPILER */usr/1lib64/ccache/cc
CMAKE_C_FLAGS *
CMAKE_C_FLAGS_DEBUG (e
CMAKE_C_FLAGS_MINSIZEREL *-Os -DNDEBUG
CMAKE_C_FLAGS_RELEASE *-03 -DNDEBUG
CMAKE_C_FLAGS_RELWITHDEBINFO *-02 -g -DNDEBUG
CMAKE_EXE_LINKER_FLAGS
CMAKE_EXE_LINKER_FLAGS_DEBUG
CMAKE_EXE_LINKER_ FLAGS_MINSIZE
CMAKE_EXE_LINKER FLAGS_RELEASE
CMAKE_EXE_LINKER FLAGS_RELWITH
CMAKE__EXPORT_COMPILE_COMMANDS *OFF
CMAKE_LINKER */usr/bin/1ld
CMAKE_MAKE_PROGRAM */usr/bin/gmake

CMAKE_AR: Path to a program.
Press [enter] to edit option
CMake Version 2.8.12.2

Press [c] to configure
Press [h] for help Press [g] to quit without generating
Press [t] to toggle advanced mode (Currently On)

Configure, then toggle to advanced mode
° Use arrow keys to move between variables
° Hit return/enter to start editing
° Hit return/enter to keep changes, esc to discard

Verbose build can be used to see the commands being issued by make

Each invocation of "make" appears to be more complicated than the autotools example...

Source type can be limited in the project() call in CMakeLists.txt

WHAT IF I DON'T NEED A C++ COMPILER, I'M
ONLY USING C CODE?

Source type can be limited in the project() call in CMakeLists.txt

Source type can be limited in the project() call in CMakeLists.txt
° Also add a "default build type" if none was provided

CMAKE SYNTAX CHANGES FROM TIME TO TIME,
SO0 PROVIDING A MINIMUM VERSION GIVEN THE
FEATURES YOU USE IS IMPORTANT.

Source type can be limited in the project() call in CMakeLists.txt
° Also add a "default build type" if none was provided

On Farber, additional (newer) versions of CMake are available via VALET

Documentation present online, also via man pages

https://cmake.org/cmake-tutorial/

