
MODULAR ENVIRONMENT
MANAGEMENT WITH

VALETDr. Jeffrey Frey
University of Delaware, IT

GOALS AS QUESTIONS
• Why is environment management necessary?
• How does VALET help manage the environment?
• Can I use VALET to manage my own software

installs?

– Buddha

"Chaos is inherent in all compounded things."

"We adore chaos because we love to produce order."
– M. C. Escher

- Very true in the realm of computers: a system comprised of many different components designed by different individuals with different goals and different ideas of how best to solve a problem.

- A sysadmin spends a lot of time determining how to make those different parts work together in harmony: organize the chaos.

NEED INPUT…
• Consider the following C program:

#include <stdio.h>

int
main()
{
double pi = 3.1415926535897932;
double r = 1.0;

printf("%lf\n", 2.0 * pi * r);
return 0;

}

- What does this program do?

- Can the behavior of this program be influenced externally? In other words, how do I go about altering the calculation?

NEED INPUT…
• As written, program needs to be re-compiled to

vary the radius
• Generally more useful to allow external input to

modify a program's behavior

command-line
argument environment

variable

input file
user interaction

- What kinds of external input might be used?

- User interaction used to be more prevalent but tends to be avoided today — why?

NEED INPUT…
• Command-line arguments

#include <stdio.h>
#include <stdlib.h>

int
main(
 int argc,
 const char* argv[]
)
{
double pi = 3.1415926535897932;
double r = 1.0;

if (argc > 1) r = strtod(argv[1], NULL);
printf("%lf\n", 2.0 * pi * r);
return 0;

}

NEED INPUT…
• Command-line arguments

$./calculate_circumference 2.54
15.959291

$./calculate_circumference 4.5e-2
0.282743

NEED INPUT…
• Environment variable

#include <stdio.h>
#include <stdlib.h>

int
main()
{
double pi = 3.1415926535897932;
double r = 1.0;
char *r_env = getenv("RADIUS");

if (r_env) r = strtod(r_env, NULL);
printf("%lf\n", 2.0 * pi * r);
return 0;

}

NEED INPUT…
• Environment variable

$ RADIUS=2.54 ./calculate_circumference_env
15.959291

$./calculate_circumference_env
6.283185

$ export RADIUS=4.5e-2
$./calculate_circumference_env
0.282743

- Note the syntax used in first line: set environment variable RADIUS in the context of the program being executed, NOT in the shell itself.

NEED INPUT…
• In Unix/Linux, environment variables are used to

tailor functionality:
• Where to look for executables
• Where to look for shared libraries required by

executables
• Where to find documentation (e.g. man pages)
• Program preferences — end-user customization

THE ENVIRONMENT
• Variables

• Key-value pairs
• e.g. PATH=/bin:/usr/bin:/usr/local/bin

• Dual visibility
• local — not inherited by programs run from the shell
• exported — inherited by programs run from the shell

- The environment is more than just variables, though

THE ENVIRONMENT
• Variables
• Aliases

• Shortcut for a longer command
• e.g. "l." ➔ "ls -d .*"

THE ENVIRONMENT
• Variables
• Aliases
• Functions

• A sequence of shell commands identified by a name
• May accept a list of arguments, just like a program

THE ENVIRONMENT
• Variables
• Aliases
• Functions

Exported variables span all
shells and programs.

Local variables, aliases, and
functions are features of the

shell itself.

SOFTWARE AND
ENVIRONMENT

• Have you ever seen something like this in software
documentation?

To begin using myProgram, edit your .bashrc file and add these
lines at the end:

 export PATH=~/myProgram/bin:$PATH
 export LD_LIBRARY_PATH=~/myProgram/lib:$LD_LIBRARY_PATH

SOFTWARE AND
ENVIRONMENT

• Making such changes to your shell login files may
have unintended side effects.
• Each time you login with ssh, those changes are

applied to the shell.
• Each job you submit, when run, has those changes

applied to its shell.
• In other words, such changes are global in scope

SOFTWARE AND
ENVIRONMENT

[user@farber ~]$ myProgram
This is version 1 of myProgram.

[user@farber ~]$ qsub
date
myProgram

^D
Your job 53935 ("STDIN") has been submitted
[user@farber ~]$

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

PATH=$HOME/bin:/opt/sbin:$PATH
export PATH

User specific aliases and functions
PATH=$HOME/version1:$PATH

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

PATH=$HOME/bin:/opt/sbin:$PATH
export PATH

User specific aliases and functions
PATH=$HOME/version2:$PATH

- It's possible you could unknowingly sabotage your own running jobs

- E.g. you submit a job to use version 1 of myProgram

- Before that job executes, you install version 2 and change .bashrc to point to it

- When your job executes, it uses version 2 when you wanted it to use version 1

SOFTWARE AND
ENVIRONMENT

[user@farber ~]$ cat STDIN.o53935
Mon Apr 13 13:37:11 EDT 2015
This is version 2 of myProgram.

[user@farber ~]$

SOFTWARE AND
ENVIRONMENT

• Making such changes to your shell login files may
have unintended side effects.

• Places the burden squarely on you
• YOU must know how to make changes
• YOU must know what to add to $PATH, etc.
• YOU must keep track of dependencies
• YOU must debug any problems that arise due to

interplay between packages

SOFTWARE AND
ENVIRONMENT

• In short, global changes added to shell login files
are only appropriate for modifying how the shell
itself behaves
• Aliases for often-used commands
• Functions in lieu of scripts for some tasks
• Standard variables (e.g. EDITOR)

• Even okay to alter PATH, e.g. add "$HOME/bin"

SOFTWARE AND
ENVIRONMENT

• Global changes made to login files are appropriate
for modifying how the shell itself behaves

• So…what to do about software packages?

- What's the opposite of GLOBAL?

- You'd like to make changes LOCAL to the individual shell.

SOFTWARE AND
ENVIRONMENT

• Need a program that can:
✓ Model a package and one or more versions of it
‣ Paths to executables, libraries, documentation
‣ Dependencies on other packages
‣ Incompatibilities with other packages
‣ Changes to environment variables

SOFTWARE AND
ENVIRONMENT

• Need a program that can:
✓ Model a package and one or more versions of it
✓ Make changes to the environment
‣ Check for incompatibilities
‣ Recursively add any dependencies
‣ Perform actions:

‣ add executable paths to $PATH, library paths to
$LD_LIBRARY_PATH, etc.

‣ alter other environment variables, aliases, functions

SOFTWARE AND
ENVIRONMENT

• Need a program that can:
✓ Model a package and one or more versions of it
✓ Make changes to the environment
✓ Revert changes
‣ Create a "snapshot" of environment prior to changes
‣ Restore a "snapshot"

ENVIRONMENT MODULES
• One solution is the environment modules program

• Implemented as TCL scripting language commands
• Version of a package = a TCL script

ENVIRONMENT MODULES
• Present on many HPC systems — might call it the

de facto standard
• Some software vendors provide module files for

their software
• Relatively straightforward PROS

ENVIRONMENT MODULES
• Have you written any TCL code?
• Only "sees" exported variables
• Change reversion is fragile

• Removes anything a package added to exported
variables

• Remove aliases added (does not restore prior value)
• Can't undo changes made by external scripts

CONS

-

VALET
• Created in 2011 for the UD Mills cluster

• Version 2.0 in 2014

• Package = XML or JSON file
• Written in Python
• Full environment snapshots

• Revert all changes

JSON
JavaScript Object Notation

XML
eXtensible Markup Language

VALET Automates Linux Environment Tasks

-

PACKAGE IDENTIFIERS
• A package is identified by a string with the

following conditions:
• It must start with a letter or number
• If can contain zero or more additional letters,

numbers, underscore, dot, plus, or hyphen
• As a regular expression:

[a-z0-9][a-z0-9_.+-]*

• A version is identified by a string with the same
conditions as a package

• A versioned package identifier is the combination
of the two:

VERSIONED PACKAGE
IDENTIFIERS

versioned package
identifier package identifier=

optional

version identifier/

• The version id default is reserved
• Corresponds to whatever version of a package is

marked as the default version

• Omitting the version identifier = implied default

VERSIONED PACKAGE
IDENTIFIERS

versioned package
identifier package identifier=

optional

version identifier/

VERSIONED PACKAGE
IDENTIFIERS

identifier meaning

gaussian Gaussian quantum chemistry
software, default version

gaussian/default Gaussian quantum chemistry
software, default version

gaussian/g09a02 Gaussian '09, revision A02

gaussian/g03e01 Gaussian '03, revision E01

• Sometimes multiple variants of a versioned package
are necessary
• Some programs may have size limits that must be

modified by recompiling
• So features may be mutually exclusive

• VALET 2.0 introduces features into the package
identification
• Not being used yet in IT-provided packages

FEATURES

- Stronger documentation and testing is required before feature support is considered "fully baked"

- Mills still using VALET 1.0 so this is not available there

- Feel free to use it in package definitions that you create!

• A list of one or more features may be appended
to the versioned package identifier using a colon
• Comma-delimited, no significance to order
• Same format as package, version

FEATURES

versioned package
identifier

package identifier=

optional

version identifier/
optional

: feature , feature ..

FEATURES
identifier meaning

acml/6.0.5.7:gcc ACML 6.0 for GCC compilers

acml/6.0.5.7:intel,openmp ACML 6.0 for Intel compilers; OpenMP
parallelism

acml/6.0.5.7:openmp,intel Same as previous — feature order does
not matter

openfoam/2.3.0:gcc,dp,opt OpenFOAM 2.3.0 compiled with GCC;
double-precision; w/ compiler optimizations

openfoam/2.3.0:gcc,sp,debug OpenFOAM 2.3.0 compiled with GCC;
single-precision; w/o compiler optimizations

COMMAND SUMMARY
command description

vpkg_list list available packages
vpkg_versions list available versions of a package
vpkg_info show information for a package/version
vpkg_require configure package(s) into the environment
vpkg_devrequire …including CPPFLAGS, LDFLAGS
vpkg_rollback undo changes made by vpkg_require
vpkg_help summarize the VALET commands
vpkg_check syntax-check a VALET package definition file

-

COMMAND SUMMARY
vpkg_list: list available packages by package id

[(user:group)@farber ~]$ vpkg_list
Available packages:
 in /home/1001/.valet
 dummy
 tubegen
 in /home/work/group/sw/valet
 g95
 jamstec
 nhwave
 truchas
 in /opt/shared/valet/2.0.1/etc
 abaqus
 acml
 acpype
 apache-ant
 arcgis
 atlas
 blacs
 boost
 cdo
 :

VALET will automatically check these directories
for packages if they exist:

 ~/.valet (in your home directory)
 $WORKDIR/sw/valet (once you've chosen a workgroup)

- If you want to use your own VALET package files in addition to what IT provides, create a directory named "dot valet" in your home directory and put them in there.

- Or, if you're building software for your workgroup, use the "sw/valet" directory.

COMMAND SUMMARY
vpkg_versions: list available versions of a package

[(user:group)@farber ~]$ vpkg_versions openmpi
Available versions in package (* = default version):

[/opt/shared/valet/2.0/etc/openmpi.vpkg_json]
openmpi Open MPI: Message-Passing Interface
 1.8 alias to openmpi/1.8.2
* 1.8.2 Version 1.8.2, with GCC(system) compilers
 1.8.2-gcc-4.8.3 Version 1.8.2, with GCC(4.8.3) compilers
 1.8.2-intel64 Version 1.8.2, with Intel64(2015) compilers
 gcc alias to openmpi/1.8.2
 intel64 alias to openmpi/1.8.2-intel64

• Shows the path to the package definition file

• Shows the default version
• Shows all version ids as well as version aliases

-

COMMAND SUMMARY
vpkg_versions: list available versions of a package

[(user:group)@farber ~]$ vpkg_versions acml
Available versions in package (* = default version):

[/opt/shared/valet/2.0/etc/acml.vpkg_xml]
acml ACML: AMD Core Math Library
 :
 6.0.5.7 alias to acml/6.0.5.7-gcc
 + gcc
 6.0.5.7 alias to acml/6.0.5.7-gcc-openmp
 + gcc
 + openmp
* 6.0.5.7-gcc Version 6.0.5.7 for GCC/GFortran
 6.0.5.7-gcc-openmp Version 6.0.5.7 for GCC/GFortran

• Features are displayed in the right column if present
• acml/6.0.5.7:gcc,openmp = alias of 6.0.5.7-gcc-openmp

-

COMMAND SUMMARY
vpkg_info: show details of a package or version of a package

[(user:group)@farber ~]$ vpkg_info nwchem
[nwchem] {
 http://www.nwchem-sw.org/index.php/Main_Page
 High-Performance Computational Chemistry
 source file: /opt/shared/valet/2.0/etc/nwchem.vpkg_json
 prefix: /opt/shared/nwchem
 affect dev env: no
 add std paths: yes
 default version: nwchem/6.5
 actions: {
 NWCHEM_PREFIX=${VALET_PATH_PREFIX} (development only)
 }
 versions: {
 [nwchem/6.5] {
 Version 6.5 with ATLAS(3.10.2), OpenMPI(1.8.2), and GCC(system)
 prefix: /opt/shared/nwchem/6.5
 affect dev env: <inherit>
 add std paths: <inherit>
 dependencies: {
 atlas/3.10.2
 openmpi/1.8.2
 pre-condition(~/.nwchemrc exists)
 }
 }
 }

This versioned package might also be
identified using features as:

nwchem/6.5:gcc,openmpi,atlas

- Prefix: directory wherein the one-or-more versions of nwchem are installed

- Actions: the modifications to be made to the environment

- Dependencies: other packages which must be present for this one to work; tests which must be satisfied

- Standard paths: look for directories like "bin" and "lib" and automatically add them to the appropriate environment variables (PATH and LD_LIBRARY_PATH). But what are "standard paths?"

ORGANIZING SOFTWARE
• Linux promotes a standard filesystem layout for

software components
path description

/usr/bin
/usr/sbin executables
/usr/lib
/usr/lib64 shared libraries
/usr/man
/usr/share/man man pages

/usr/include header files (for development)
/usr/lib/pkgconfig
/usr/share/pkgconfig pkgconfig definition files

- Some of these directories are also present at the root of the filesystem, e.g. "/bin" and "/lib".

ORGANIZING SOFTWARE
• Duplicate this directory structure for each version

of a software package
path

/opt/shared/openmpi/1.8.3/bin

/opt/shared/openmpi/1.8.3/lib

/opt/shared/openmpi/1.8.3/share/man

/opt/shared/openmpi/1.8.3/include

/opt/shared/openmpi/1.8.3/lib/pkgconfig

Prefix for package:
/opt/shared/openmpi

Prefix for version of package:
[prefix for package]/1.8.3

- Drop the "/usr" prefix and replace with a different prefix.

- The prefix for a version is relative to the prefix of the package.

ORGANIZING SOFTWARE
• Duplicate this directory structure for each version of a

software package
• Software built using the GNU ./configure system often

install into this same set of directories
• VALET looks for these paths' being present and will

configure them accordingly
• bin/ ➔ $PATH
• lib64/ ➔ $LD_LIBRARY_PATH, $LDFLAGS
• share/man ➔ $MANPATH
• include/ ➔ $CPPFLAGS

ORGANIZING SOFTWARE
/home/work/it_nss/sw

gcc

4.4.7

bin

lib

include

4.8.3

bin

src

source code for
version 4.4.7

attic downloaded
source archives

Prefix for package:
/home/work/it_nss/sw/gcc

Prefix for gcc/4.4.7:
[prefix for gcc]/4.4.7

- This is the scheme that IT uses for the software it maintains on the clusters

- As mentioned a few slides back, adding a "valet" directory to this tree is an easy way to integrate with VALET.

COMMAND SUMMARY
vpkg_require: add one or more versioned packages to the environment

[(user:group)@farber ~]$ vpkg_require gaussian
WARNING: The Portland compiler suite is not officially supported on Farber.
WARNING: It has been made available by popular request.
Adding dependency `pgi/14.10` to your environment
Adding package `gaussian/g09d01` to your environment

[(user:group)@farber ~]$ vpkg_require gaussian/g09d01

[(user:group)@farber ~]$ vpkg_require gaussian/g09a01
gaussian/g09a01 conflicts with gaussian/g09d01 already added to environment

• Dependencies are satisfied BEFORE any other changes are
made to the environment.

• Re-adding the same package has no effect
• Adding one version on top of another is forbidden

-

COMMAND SUMMARY
vpkg_rollback: remove environment changes introduced by vpkg_require

[(user:group)@farber ~]$ vpkg_rollback

[(user:group)@farber ~]$ vpkg_rollback
ERROR: no previous session on record, unable to roll back

[(user:group)@farber ~]$ vpkg_rollback all

• Each vpkg_require creates a snapshot of the full
environment prior to making any changes

• The vpkg_rollback command restores the last snapshot
• Include the argument all to remove the effects of all

preceding vpkg_require's performed in the shell

WRITING VALET PACKAGE
DEFINITIONS

• Package prefix

• Version prefix (relative)

• Uses standard paths

/home/work/it_nss/sw

gcc

4.4.7

bin

lib

include

src

/home/work/it_nss/sw/gcc

4.4.7

WRITING VALET PACKAGE
DEFINITIONS

• Please note:

• If a prefix is not provided
for a version, its id is
assumed to be the
relative prefix

• Using standard paths, the
configuration is extremely
simple to express

<package id="gcc">
 <prefix>/home/work/it_nss/sw/gcc</prefix>
 <version id="4.4.7">
 </version>
</package>

WRITING VALET PACKAGE
DEFINITIONS

• Same package definition
expressed in JSON

{
 "gcc": {
 "prefix": "/home/work/it_nss/sw/gcc",
 "versions": {
 "4.4.7": {
 }
 }
 }
}

WRITING VALET PACKAGE
DEFINITIONS

• Explicitly configure those
standard paths

• Indicate that standard
paths should not be
implicitly managed

• Add actions to the
version's configuration

<package id="gcc">
 <prefix>/home/work/it_nss/sw/gcc</prefix>
 <no-standard-paths/>
 <version id="4.4.7">
 <actions>
 <bindir>bin</bindir>
 <incdir>include</incdir>
 <libdir>lib</libdir>
 </actions>
 </version>
</package>

WRITING VALET PACKAGE
DEFINITIONS

• Same package definition
expressed in JSON

{
 "gcc": {
 "prefix": "/home/work/it_nss/sw/gcc",
 "standard-paths": false,
 "versions": {
 "4.4.7": {
 "actions": [
 {
 "bindir": "bin",
 "incdir": "include",
 "libdir": "lib"
 }
]
 }
 }
 }
}

WRITING VALET PACKAGE
DEFINITIONS

• Create a version "4.4" that
always equates to the
newest 4.4 release

• Add a version alias

• Use "4.4" as the default
version

<package id="gcc">
 <prefix>/home/work/it_nss/sw/gcc</prefix>
 <no-standard-paths/>
 <default-version>4.4</default-version>
 <version id="4.4.7">
 <actions>
 <bindir>bin</bindir>
 <incdir>include</incdir>
 <libdir>lib</libdir>
 </actions>
 </version>
 <version id="4.4" alias-to="4.4.7"/>
</package>

without an
explicit default,

the first version
specified is

assumed to be
the default for
the package

WRITING VALET PACKAGE
DEFINITIONS

• Same package definition
expressed in JSON

{
 "gcc": {
 "prefix": "/home/work/it_nss/sw/gcc",
 "standard-paths": false,
 "default-version": "4.4",
 "versions": {
 "4.4.7": {
 "actions": [
 {
 "bindir": "bin",
 "incdir": "include",
 "libdir": "lib"
 }
]
 },
 "4.4": {
 "alias-to": "4.4.7"
 }
 }
 }
}

WRITING VALET PACKAGE
DEFINITIONS

• Add a command alias,
configured with any version,
which displays the version
of GCC

• An actions list is valid
both for a version and for
the package itself

<package id="gcc">
 <prefix>/home/work/it_nss/sw/gcc</prefix>
 <default-version>4.4</default-version>
 <actions>
 <shell-alias
 shell="sh"
 name="gcc_version">
 gcc -v 2>&1 | tail -1
 </shell-alias>
 </actions>
 <version id="4.4.7"></version>
 <version id="4.4" alias-to="4.4.7"/>
</package>

- We'll switch back to allowing VALET to recognize and add standard paths

WRITING VALET PACKAGE
DEFINITIONS

• Same package definition
expressed in JSON

{
 "gcc": {
 "prefix": "/home/work/it_nss/sw/gcc",
 "default-version": "4.4",
 "actions": [
 { "shell-alias": "gcc_version",
 "command": {
 "sh": "gcc -v 2>&1 | tail -1"
 }
 }
],
 "versions": {
 "4.4.7": {},
 "4.4": {
 "alias-to": "4.4.7"
 }
 }
 }
}

WRITING VALET PACKAGE
DEFINITIONS

• Install GCC 4.8.3, which
makes use of MPFR 3.1.2
and any 1.x version of MPC
1.0.2

• Uses a regular expression
for the MPC version id

• ANY version starting
with "1." is acceptable

<package id="gcc">
 <prefix>/home/work/it_nss/sw/gcc</prefix>
 <default-version>4.4</default-version>
 <actions>
 <shell-alias
 shell="sh"
 name="gcc_version">
 gcc -v 2>&1 | tail -1
 </shell-alias>
 </actions>
 <version id="4.8.3">
 <dependencies>
 <package id="mpfr/3.1.2"/>
 <package id="mpc/^^1\."/>
 </dependencies>
 </version>
 <version id="4.4.7"></version>
 <version id="4.4" alias-to="4.4.7"/>
</package>

WRITING VALET PACKAGE
DEFINITIONS

• Same package definition
expressed in JSON

{
 "gcc": {
 "prefix": "/home/work/it_nss/sw/gcc",
 "default-version": "4.4",
 "actions": [
 { "shell-alias": "gcc_version",
 "command": {
 "sh": "gcc -v 2>&1 | tail -1"
 }
 }
],
 "versions": {
 "4.8.3": {
 "dependencies": [
 "mpfr/3.0.2",
 "mpc/^^1\\."
]
 },
 "4.4.7": {},
 "4.4": {
 "alias-to": "4.4.7"
 }
 }
 }
}

WRITING VALET PACKAGE
DEFINITIONS

• Check your VALET package definition for correctness

• The vpkg_check command will attempt to parse a file and
display errors if unsuccessful

[(user:group)@farber .valet]$ vpkg_check dummy.vpkg
ERROR: dummy.vpkg is not a valid XML file: not well-formed (invalid token): line 7,
column 19

[(user:group)@farber .valet]$ vpkg_check dummy.vpkg_json
ERROR: dummy.vpkg_json is not a valid JSON file: Invalid \escape: line 16 column 19
(char 331):: {
:: "dummy": {
:: "prefix": "/home/work/it_nss/sw/gcc",
::

WRITING VALET PACKAGE
DEFINITIONS

• Just the tip of the iceberg!
• Extensive documentation of the XML and JSON

grammar can be found at
http://docs.hpc.udel.edu/software/valet/start

http://docs.hpc.udel.edu/software/valet/start

SUMMARY
• Managing environment configuration is key to

working safely and smartly
• Adopting a modular, organized approach to

installing software helps promote that
• Automation via tools like environment modules or

VALET saves a great deal of frustration, time, and
effort

SUMMARY
• VALET provides a mechanism for modeling

environment alterations associated with software
packages…
• …that can be very simple (our initial GCC example).
• …or very complex when necessary.

• VALET uses full environment checkpointing for accurate
reversion of changes to the environment

http://docs.hpc.udel.edu/software/valet/start

Any Questions?

http://docs.hpc.udel.edu/software/valet/start

